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Abstract

In the work the uniform convergence of rows of the Padé approximants for a meromorphic

function aðzÞ is studied. The complete description of the asymptotic behavior of denominators
QnðzÞ of the Padé approximants is obtained for the ðl� 1Þth row. Here l is the number of the
poles of aðzÞ: The limits of all convergent subsequences of fQnðzÞg are explicitly computed.

These limits form a family of polynomials which is parametrized by a monothetic subgroup F

of the torus Tn: The group F is constructed via the arguments Y1;y;Yn of those poles of aðzÞ
of the maximal modulus that have the maximal multiplicity.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The convergence of row sequences of the Padé table for meromorphic functions is
a subject of numerous works (see, e.g., [11,12,14,19,20,22,25,29–32]). The first result
obtained by de Montessus de Ballore in 1902 [25]. In this work de Montessus showed
that the row sequence of the Padé approximants pn;lðzÞ of type ðn; lÞ for a

meromorphic function aðzÞ converges to aðzÞ as n-N in a disk jzjoR with the
exception of neighborhoods of the poles of aðzÞ: Here l is the number of the poles
(counting multiplicity) of aðzÞ in the disk. The key to the problem was the fact,
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discovered by Hadamard [20], that the zeros of the denominators Qn;lðzÞ of pn;lðzÞ
tend to the poles of aðzÞ:
Lin [22] and Sidi [29] obtained a sufficient condition for the convergence of some

intermediate rows of the Padé table. To describe their results, we introduce some
needed notation. Let aðzÞ be a function which is meromorphic in the disk DR ¼
fzAC j jzjoRg and analytic at the origin. Let z1;y; zc be its distinct poles of
multiplicities s1;y; sc; respectively, and let l ¼ s1 þ?þ sc be the number of its
poles in the disk DR: Suppose that

r 	 jz1j ¼ ? ¼ jzmj4jzmþ1jX?Xjzcj:

The poles z1;y; zm of the maximal modulus are ordered in such a way that

s1X?Xsm: If

m ¼
Xc
j¼1

sj m ¼
Xc

j¼mþ1
sj

 !
;

then, by de Montessus’s theorem, pn;mðzÞ converges to aðzÞ; uniformly on any

compact subset of the set DR\fz1;y; zcg ðDr\fzmþ1;y; zcgÞ: IfXc
j¼mþ1

sjomo
Xc
j¼1

sj;

then mth row of the Padé table is said to be an intermediate row.
In [22,29] it is shown that limn-N pn;mðzÞ exists for a mth intermediate row if there

is a unique solution to the following integer programming problem:

maximize
Xm
j¼1

ðsjsj � s2j Þ overðs1;y; smÞ ð1:1Þ

subject to
Pm

j¼1 sj ¼ m �
Pc

j¼mþ1 sj and 0psjpsj; sj are integers. In particular, it is

easily seen that for m ¼
Pc

j¼1 sj � 1 (for the last intermediate row) a unique solution

of problem (1.1) exists iff s14s2: Hence if the function aðzÞ has a single pole of the
maximal multiplicity among the poles of the maximal modulus, then there exists
limn-N pn;l�1ðzÞ:
In the work of Liu and Saff [24] the convergence of intermediate rows of the Walsh

array of the best rational approximations to a meromorphic function was
investigated (in the special case when aðzÞ has poles at just two point at the
boundary see [28]). The authors obtained also a uniqueness criterion and explicit
formulas for a unique solution of problem (1.1). The convergence of intermediate
rows for a multipoint Padé approximations was studied in [23].
For intermediate rows not satisfying the uniqueness criterion (‘‘bad’’ intermediate

rows, by terminology of Liu and Saff) Liu [23, Section 5] gave an example to explain
the complexity of convergence. He investigated an asymptotic behavior of poles of
pn;1ðzÞ for a function with exactly two different simple poles lying on the unite circle.

It turns out that the set of the limit points of the zeros of Qn;1ðzÞ could make up an

arc of a circle in jzjo1:
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In the general case, the complete description of the limit point set of the poles of
pn;m as n-N; does not exist for any row. However, there is an intermediate row for

which this description can be obtained. It turns out that for the last intermediate row
ðm ¼ l� 1Þ the complete theory of the uniform convergence of the sequence
pn;l�1ðzÞ can be constructed. This means that we can explicitly calculate the limits of
all convergent subsequences of the sequence of the denominators Qn;l�1ðzÞ as n-N:
Hence for this row we can explicitly describe the set of limit points of the poles of
pn;l�1ðzÞ: In particular, we will show that the inequality s14s2 is the necessary

convergence condition for the last intermediate row. Moreover, the example of Liu
will be significantly generalized.
In the present work we will establish that the asymptotic behavior of the

denominators Qn;l�1ðzÞ is defined by an arithmetic nature of these poles of aðzÞ that
have the maximal modulus and the maximal multiplicity. Our approach to the
problem can briefly be described as follows.
Let us represent the meromorphic function aðzÞ in the form:

aðzÞ ¼ bðzÞ þ rðzÞ:

Here the function bðzÞ is analytic in jzjoR and rðzÞ is a strictly proper rational
function which is the sum of the principal parts of the Laurent series of aðzÞ in
neighborhoods of the poles of aðzÞ:
In [18] the problem was formulated of how the passage from the analytic function

bðzÞ to the meromorphic function bðzÞ þ rðzÞ influences the convergence of the Padé
approximants. In [18,27] the convergence of the diagonal Padé approximants was
studied for the case when bðzÞ is the Markov function for a measure with a compact
support on R: Essential in the considerations of those works was the fact that the
asymptotic behavior of denominators of the Padé approximants for bðzÞ was well
studied and rðzÞ was considered as a kind of perturbation.
In contrast with [18,27] we will study the convergence of the row Padé

approximants of aðzÞ as the result of a small perturbation of the Padé approximants
of the rational function rðzÞ by bðzÞ: To do this, we will study the asymptotic
behavior of the denominators of the Padé approximants for the rational function
rðzÞ: Then considerations based on the stability allow to get the same asymptotic
behavior for the Padé approximants of aðzÞ: Thus for the ðl� 1Þth row the
convergence of the Padé approximants of aðzÞ is completely determined by the
rational part rðzÞ of the function aðzÞ: This approach was earlier used for a proof of a
matrix analog of de Montessus’s theorem [9].

2. Statement of main results

Let aðzÞ be a function which is meromorphic in the disk DR and analytic at the
origin. Let z1;y; zc be its distinct poles of multiplicities s1;y; sc; respectively, and
let l ¼ s1 þ?þ sc be the number of its poles in the disk. In this article we will

consider the Padé approximants pnðzÞ ¼ PnðzÞ
QnðzÞ of type ðn; l� 1Þ for aðzÞ: In the sequel
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we will see that the asymptotic behavior of the denominators QnðzÞ as n-N is
defined by an arithmetic nature of these poles of the maximal modulus that have the
maximal multiplicity. Let us introduce some needed notation.
Suppose that

r 	 jz1j ¼ ? ¼ jzmj4jzmþ1jX?Xjzcj:

The poles z1;y; zm of the maximal modulus are ordered in such a way that

s1X?Xsm: Among the poles z1;y; zm we select the poles z1;y; zn ð1pnpmpcÞ
that have the maximal multiplicity:

s 	 s1 ¼ ? ¼ sn4snþ1X?Xsm:

The poles z1;y; zn will be called dominant poles of aðzÞ: Let
z1 ¼ re2piY1 ;y; zn ¼ re2piYn :

Introduce the vector x ¼ ðe2piY1 ;y; e2piYnÞ belonging to the torus Tn: The
asymptotic behavior of QnðzÞ will be determined by the limiting behavior of
xn; n-N: Hence we will need the closure F of the semigroup fxngnX0 in Tn: This set

coincides with the closure of the cyclic group fxngnAZ (see Theorem 5.1), i.e. F is a

monothetic subgroup of the torus Tn:
In the problem under consideration the group F plays a significant role. The limits

of all convergent subsequences of fQnðzÞg form a family of polynomials which is
parametrized by F: For this reason we will call F by the parameter group.
Our first result is concerned with an explicit construction of F in terms of Y0 ¼

1;Y1;y;Yn: We will use the following well-known fact: an arbitrary integer matrix
can be reduced to the diagonal form (the Smith form) by integer elementary
transformations. Denote the field of rational numbers by Q:

Theorem 2.1. Let r þ 1 be the rank over Q of the system of the real numbers Y0 ¼
1;Y1;y;Yn:

If r ¼ n; then F ¼ Tn:
Let 0pron: Put the poles z1;y; zn in such order that Y0 ¼ 1;Y1;y;Yr is a

maximal linearly independent over Q subsystem of the system Y0;Y1;y;Yn; and

Yj ¼
Xr

k¼0
qkjYk; qkjAQ; j ¼ r þ 1;y; n:

Let akk be the least common multiple of the denominators of the rational fractions qkj

and akj ¼ akkqkj for k ¼ 0;y; r; j ¼ r þ 1;y; n: We compose the integer matrix

A ¼
a00 y 0 a0;rþ1 y a0n
^ & ^ ^ ^

0 y arr ar;rþ1 y arn

0B@
1CA

and reduce it to the Smith form over the ring Z:

A ¼ S1DS�1
2 :
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Here S1; S2 are invertible over Z integer matrices. Delete the first row and the first

r þ 1 columns in S2; and denote the obtained matrix by S: Let us now reduce S to the

Smith form:

S ¼ T1D0T
�1
2 :

Then the invariant factors of S are 1;y; 1; s; where s is the greatest common divisor

of minors of order n� r of the matrix S:

Denote the ðn� r þ jÞth row of T�1
1 by Qj; j ¼ 0;y; r: Then the group F consists of

the points t ¼ ðt1;y; tnÞATn such that

t ¼ xQ0

n t
Q1

1 ytQr
r :

Here

xn ¼ e
2pin
s ; n ¼ 0;y; s� 1;

ðt1;y; trÞ is an arbitrary point of the torus Tr; and we use the notation tQ ¼
ðtq1 ;y; tqnÞ; where Q ¼ ðq1;y; qnÞ:

Now it is not difficult to prove that for any tAF there exists the sequence LtDN

consisting of numbers k1; k2;y; kjokjþ1; such that

lim
k-N

ðe2pikY1 ;y; e2pikYnÞ ¼ t; kALt:

We denote by Lt � l the sequence Lt shifted by l:
The following theorem is the main result of the work. In it we will describe the

asymptotic behavior of the denominators QnðzÞ and will calculate the limit points of
the sequence fQnðzÞg:
Let Aj be the coefficient of ðz � zjÞ�sj in the Laurent series in a neighborhood of

the pole z ¼ zj for the function aðzÞ: Put

Cj ¼
1

ðsj � 1Þ!zsj�1
j D2

j ðzjÞAj

;

where

DjðzÞ ¼
DðzÞ

ðz � zjÞsj
; DðzÞ ¼ ðz � z1Þs1?ðz � zcÞsc ; 1plpc:

Denote

SjðtÞ ¼
Xn
k¼1

Ckz
j

ktk; t ¼ ðt1;y; tnÞAF; jAZ:

The nonnegative integer dþðtÞ ðd�ðtÞÞ will be called the plus-defect (minus-defect)
of tAF if dþðtÞ ðd�ðtÞÞ is the least nonnegative integer such that SdþðtÞðtÞa0

ðS�d�ðtÞ�1ðtÞa0Þ: It is easily seen that 0pdþðtÞpn� 1; 1pd�ðtÞpn: If t is fixed,

then for brevity we will write dþ; d� instead of dþðtÞ; d�ðtÞ: A polynomial PðzÞ is
said to be d-normalized if the coefficient of zd in PðzÞ is equal to 1.
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Theorem 2.2. Let t be an arbitrary point of the group F and let Lt be a sequence of

indices corresponding to t:
Then, for all n; nALt � l; sufficiently large the denominator QnðzÞ can be

ðl� dþ � 1Þ-normalized and for the sequence of the normalized polynomials QnðzÞ
there exists

lim
n-N

QnðzÞ ¼ Wðz; tÞ; nALt � l; tAF:

Here W ðz; tÞ is a polynomial of degree l� dþ � 1 which has z ¼ 0 as a root of

multiplicity d�: This polynomial is computed by the formula:

Wðz; tÞ ¼ S�1
dþ ðtÞoðz; tÞðz � z1Þs1�1

yðz � znÞsn�1ðz � znþ1Þsnþ1
yðz � zcÞsc ;

oðz; tÞ ¼
Xn
j¼1

CjDjðzÞtj; Dj ¼
DðzÞ
z � zj

; DðzÞ ¼ ðz � z1Þyðz � znÞ:

The family Wðz; tÞ; tAF; exhausts all limit points of the suitable normalized

sequence fQnðzÞg:

From this theorem it follows

Proposition 2.1. For the denominators QnðzÞ of the Padé approximants of type ðn; l�
1Þ we have as n-N; nALt � l; tAF:

(1) si � 1 roots of QnðzÞ tend to zi; for i ¼ 1;y; n;
(2) si roots of QnðzÞ tend to zi for i ¼ nþ 1;y; c;
(3) dþðtÞ roots of QnðzÞ tend to N; and d�ðtÞ roots tend to 0;
(4) the other n� dþðtÞ � d�ðtÞ � 1 roots of QnðzÞ tend to the finite nonzero roots of

oðz; tÞ which are different from z1;y; zn:

Hence the set of the limit points of poles of the sequence fpnðzÞg; n-N; consists
of the poles of aðzÞ (the multiplicity of the poles z1;y; zn is less by 1), possibly the
points z ¼ 0 and N; and the set of the zeros of polynomials from the family oðz; tÞ;
tAF: The last set will be called the set of additional limit points and will be denoted
by NF:
The following theorem is also a direct consequence of the main result.

Theorem 2.3. Fix tAF and let Lt be a corresponding sequence of numbers. Let Kt be

any compact set of the disk jzjor such that all zeros of the polynomial Wðz; tÞ from

Theorem 2.2 lie outside Kt:
Then

lim
n-N

jjpnðzÞ � aðzÞjjCðKtÞ ¼ 0; nALt � l:
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Now we state some results on the geometry of the set NF: First we study the case

when NF ¼ |: If aðzÞ has a single dominant pole (n ¼ 1), then it is easily seen that

oðz; tÞ ¼ const and NF ¼ |: This means that the whole sequence pn;l�1ðzÞ has limit.
We arrive at the result of Lin [22] and Sidi [29] mentioned in Introduction. It turns
out that the converse statement is also true. Moreover, a stronger result holds. The
polynomials oðz; tÞ have the same set of zeros for all tAF iff oðz; tÞ ¼ const: Hence
we obtain the following result.

Theorem 2.4. The sequence of normalized denominators QnðzÞ has limit as n-N if

and only if n ¼ 1:

The next case is n ¼ 2: The group F is easily computed and we obtain

Theorem 2.5. Let n ¼ 2; i.e. aðzÞ has exactly two dominant poles z1; z2: If z1; z2 are

vertices of a regular s-gon, then NF consists of s or s� 1 points lying on the

Apollonius circle

z � z1

z � z2

���� ���� ¼ C1

C2

���� ����:
In the converse case the set NF coincides with this circle (or this straight line if

jC1

C2
j ¼ 1).

If we put c ¼ m ¼ n ¼ 2; s ¼ 1; then we obtain the example of Liu [23, Section 5,
Proposition 1].
Now let n42 and let Nj ð1pjpnÞ be the set of complex points z satisfying the

inequality

jCjDjðzÞjp
Xn
k¼1
kaj

jCkDkðzÞj; j ¼ 1;y; n:

Put N ¼
Tn

j¼1 Nj: It is not difficult to show that for n42 the set NF is a nonempty

closed subset of N:

Theorem 2.6. If r ¼ n; i.e. the numbers Y0 ¼ 1;Y1;y;Yn are linearly independent

over Q; then

NF ¼ N:

In the following case the set NF consists of a finite number of points.

Theorem 2.7. The set NF is finite if and only if the dominant poles z1;y; zn are

vertices of a regular s-gon, sXn: If this condition is fulfilled, then NF consists of the
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roots of the polynomials

ojðzÞ ¼
Xn
k¼1

CkDkðzÞz j
k ; j ¼ 0; 1;y; s� 1:

These polynomials can be obtained by the recurrence formula:

onþ1ðzÞ ¼ zonðzÞ � anDðzÞ; nX0:

Here an is the formal leading coefficient of onðzÞ:

For other cases of explicit construction of the set NF see Section 9.
The results on the geometry of NF can be used in numerical analyses for

localization of poles of meromorphic functions. This will be the subject of
forthcoming paper.

3. Method of essential polynomials and Padé approximants

Our approach to a convergence problem for a row sequence of Padé approximants
of meromorphic functions is based on a method of essential polynomials. Notions
of indices and essential polynomials were first introduced in [1] in connection with
an explicit construction of a Wiener–Hopf factorization for triangular 2
 2
matrix functions (see also [2–4]). The algebraic results that derived by this method
are summarized in [7]; the analytic applications to the Wiener–Hopf factorization
of meromorphic matrix functions are given in [5,6,8]. Moreover, de Montessus’s
theorem for matrix Padé approximants was also proved on the basis of this
approach [9].
In this section we will reformulate the classical definition of the Padé

approximants in terms of essential polynomials. We begin with the definition that
naturally leads to the notions of the essential polynomials. Since we will consider the
row convergence, we can restrict ourselves to the case of the Padé approximant of
type ðn;mÞ for nXm:

Definition 3.1. Let aðzÞ ¼
P

N

i¼0 aiz
i be a ( formal) power series. The Padé

approximant of type ðn;mÞ and order k ðn � mpkpn þ mÞ for aðzÞ is a rational

function pðkÞn;mðzÞ ¼ P
ðkÞ
n;mðzÞ=Q

ðkÞ
n;mðzÞ such that the polynomials P

ðkÞ
n;mðzÞ and Q

ðkÞ
n;mðzÞ

satisfy the following conditions:

1. Q
ðkÞ
n;mðzÞc0; deg Q

ðkÞ
n;mðzÞpk � n þ m;

2. deg P
ðkÞ
n;mðzÞpk;

3. aðzÞQðkÞ
n;mðzÞ � P

ðkÞ
n;mðzÞ ¼ Oðznþmþ1Þ; z-0:
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If k ¼ n þ m; then for any polynomial Q
ðnþmÞ
n;m ðzÞ of formal degree 2m Condition 3

is fulfilled automatically. Obviously, the classical definition of the Padé approximant
of type ðn;mÞ corresponds to our definition for k ¼ n: We note that any Padé
approximant of type ðn;mÞ and order kpn is the classical Padé approximants of type
ðn;mÞ:
It is easy to verify that the vector consisting of the coefficients of the polynomial

Q
ðkÞ
n;mðzÞ belongs to the kernel of the Toeplitz matrix

Tkþ1 ¼

akþ1 ak y an�mþ1

akþ2 akþ1 y an�mþ2

^ ^ ^

anþm anþm�1 y a2n�k

0BBB@
1CCCA

for n � mpkpn þ m � 1: (We prefer to deal with Toeplitz matrices in place of often

used Hankel ones.) Since the numerator P
ðkÞ
n;mðzÞ can be easily found by the

denominator Q
ðkÞ
n;mðzÞ; we concentrate on a determination of the polynomial Q

ðkÞ
n;mðzÞ:

Hence we must study the kernel structure of matrices from the family fTkgnþm
k¼n�mþ1

(for detail we refer to the work [7]). By anþm
n�mþ1 we denote the sequence

fan�mþ1; an�mþ2;y; anþmg generating this family. If we want to emphasize the

dependence of Tk on anþm
n�mþ1; we will use the notation Tkðanþm

n�mþ1Þ: By ker A we

denote the kernel of a matrix A and by ½A�j ð½A� jÞ denote the jth row (the jth

column) of A:
Since it is more convenient to deal not with the coefficients of polynomials but

directly with the polynomials, we pass from the spaces ker Tkðanþm
n�mþ1Þ to the spaces

Nkðanþm
n�mþ1Þ of generating polynomials. To do this, with the help of the series aðzÞ we

introduce on the space rational functions of the form RðzÞ ¼
PN

j¼M rjz
j the Stieltjes

functional s by the formula

sfRðzÞg ¼
XN

j¼M

a�jrj:

Here we suppose that ai ¼ 0 for io0: It is easily seen that sfz�iRðzÞg coincides with
the coefficient of zi in the Laurent series aðzÞRðzÞ:
By Nkðanþm

n�mþ1Þ ðn � m þ 1pkpn þ mÞ we denote the space of polynomials of

formal degree k � n þ m � 1 satisfying the following orthogonality conditions:

sfz�iRðzÞg ¼ 0; i ¼ k; k þ 1;y; n þ m: ð3:1Þ

For brevity, we will also use the notation Nk: Obviously, Nk is the space of
generating polynomials of vectors in ker Tk: For convenience, we putNn�m ¼ 0 and
denote by Nnþmþ1 the ð2m þ 1Þ-dimensional space of all polynomials of formal

degree 2m: Thus Q
ðkÞ
n;mðzÞANkðanþm

n�mþ1Þ: By dk we denote the dimension of Nk: Let

Dk ¼ dk � dk�1; n � m þ 1pkpn þ m þ 1: If anþm
n�mþ1 is a nonzero sequence, then

Dn�mþ1 ¼ 0; Dnþmþ1 ¼ 2: It follows from conditions (3.1) that Nk and zNk are
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subspaces of Nkþ1 ðn � m þ 1pkpn þ mÞ: Moreover, it is easy to see that

Nk-zNk ¼ zNk�1:

Therefore, by the Grassmann formula

dim½Nk þ zNk� ¼ 2dk � dk�1: ð3:2Þ

Let hkþ1 be the dimension of any complementHkþ1 of the subspaceNk þ zNk in
the whole space Nkþ1: Then hkþ1 ¼ Dkþ1 � Dk; i.e. Dkþ1XDk: Thus,

0 ¼ Dn�mþ1pDn�mp?pDnþmpDnþmþ1 ¼ 2:

It follows from this that there are two integers m1; m2 ðn � m þ 1pm1pm2pn þ mÞ
such that

Dn�mþ1 ¼ ? ¼ Dm1 ¼ 0;

Dm1þ1 ¼ ? ¼ Dm2 ¼ 1;

Dm2þ1 ¼ ? ¼ Dnþmþ1 ¼ 2: ð3:3Þ

If the second row is absent, we assume that m1 ¼ m2: It is easy to verify that m1 þ m2 ¼
2n þ 1: Hence in our case m1pnom2:

Definition 3.2. The integers m1; m2 defined in Eqs. (3.3) will be called the indices of

the sequence anþm
n�mþ1:

We see from Eqs. (3.3) that hkþ1a0 for k ¼ m1 and k ¼ m2 only. Moreover, since
m1om2; we have hm1þ1 ¼ hm2þ1 ¼ 1: Hence,

Nkþ1 ¼ Nk þ zNk

for kami; and

Nmiþ1 ¼ ðNmi
þ zNmi

Þ ’þHmiþ1; i ¼ 1; 2:

Here Hmiþ1 is an one-dimensional subspace of Nmiþ1:

Now we can describe the kernel structure of the family fTkgnþm
k¼n�mþ1: For kA½n �

m þ 1;m1� we have Nk ¼ 0: The first nonzero space is the one-dimensional space
Nm1þ1: Let R1ðzÞ be its basis. Then for kA½m1 þ 1; m2�

Nk ¼ fq1ðzÞR1ðzÞg;

where q1ðzÞ is an arbitrary polynomial of formal degree k � m1 � 1: In particular,
Nnþ1 ¼ fq1ðzÞR1ðzÞg; where deg q1ðzÞpn � m1; and we obtain the parametrization
of the set of denominators for the classical Padé approximant of type ðn;mÞ:
Let R2ðzÞ be a basis of any complement Hm2þ1 of the subspace Nm2 þ zNm2 ¼

fq1ðzÞR1ðzÞg in the whole space Nm2þ1: Then

Nk ¼ fq1ðzÞR1ðzÞ þ q2ðzÞR2ðzÞg

for kA½m2 þ 1; n þ m þ 1�: Here qiðzÞ is an arbitrary polynomial of formal degree
k � mi � 1; i ¼ 1; 2:
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Thus the polynomials R1ðzÞ; R2ðzÞ play an essential role in the description of the
spaces Nk: It is easily seen that if fckg are moments of a measure with respect to the
unit circle, then R1ðzÞ for the sequence cn�1

�n is the orthogonal polynomial of degree n

on the unit circle.

Definition 3.3. The polynomials R1ðzÞ; R2ðzÞ will be called the essential polynomials
of the sequence anþm

n�mþ1:

Note that the first essential polynomial R1ðzÞ is unique up to multiplication by a
constant, while there is sufficient degree of freedom in a choice of the second
essential polynomial R2ðzÞ:
In what follows we must be able to verify that the given integers m1; m2 ðn �

mpm1pm2pn þ m; m1 þ m2 ¼ 2n þ 1Þ are indices and that the given polynomials

R1ðzÞANm1þ1; R2ðzÞANm2þ1 are essential polynomials of the sequence anþm
n�mþ1:

It turns out that in order to verify essentialness we must test the inequality

s0 	 sfz�m1R2;m2�nþmR1ðzÞ � z�m2R1;m1�nþmR2ðzÞga0

(see [6,7] at once for the matrix case). Here Ri;mi�nþm is the formal leading coefficient

of RiðzÞ: The number s0 will be called the test number for the given integers m1; m2
and polynomials R1ðzÞ;R2ðzÞ:
Now we find when the indices of a sequence anþm

n�mþ1 are stable under small

perturbations. It is easily seen that if kpm1; then Tk is left invertible and if kXm2;
then Tk is right invertible. Since the set of one-sided invertible operators is open, the
indices %m1; %m2 of a perturbation sequence satisfy the inequality

m1p %m1p %m2pm2:

Hence, if m2 � m1p1; i.e.,

m1 ¼ n; m2 ¼ n þ 1;

then the indices m1; m2 are stable under small perturbations. It can be shown that this
condition is also necessary for the stability of the indices. We note that if the
Hadamard determinant

Dnþ1;m ¼ det jjai�jjji¼nþ1;y;nþm
j¼0;1;y;m�1

is nonvanishing, then the indices are stable.
Return to the Padé approximants. After we study the kernel structure of the

matrices Tkðanþm
n�mþ1Þ; the following definition will be natural.

Definition 3.4. The Padé approximant pðm1Þn;m ðzÞ of type ðn;mÞ and minimal order
k ¼ m1 will be called the Padé approximant pn;mðzÞ of type ðn;mÞ:

Summing the above considerations, we come to the following result.

V.M. Adukov / Journal of Approximation Theory 122 (2003) 160–207170



Theorem 3.1. The Padé approximant pn;mðzÞ ¼ Pn;mðzÞ
Qn;mðzÞ of type ðn;mÞ always exists and

has the minimal order. The numerator and the denominator of pn;mðzÞ are uniquely

determined up to multiplication by a constant, and Qn;mðzÞ is the first essential

polynomials R1ðzÞ of the sequence anþm
n�mþ1: Moreover, pn;mðzÞ is the classical Padé

approximant and also it coincides with the Padé–Baker approximant if the last exists.
The Padé–Baker approximant exists if and only if R1ð0Þa0: If R1ð0Þ ¼ 0; then the

index of defect on;m coincides with the multiplicity z ¼ 0 as a root of R1ðzÞ:

It is only required to prove the statements on the Padé–Baker approximant. But
the proof is straightforward and therefore is omitted. Moreover, these statements are
not used in the following.
Thus we clarify the place of the index m1 and the first essential polynomial R1ðzÞ of

the sequence anþm
n�mþ1 in the theory of the Padé approximants. As we will see in Section

8, in our approach the second essential polynomial R2ðzÞ also plays an important
role. For completeness we formulate yet another result that make clear the place of
R2ðzÞ: This result is also not used in the given work.

Theorem 3.2. Suppose the Hadamard determinant

Dn;m ¼ det jjai�jjji¼n;y;nþm
j¼0;1;y;m

is nonvanishing.

Then the sequences anþm
n�m�1 and anþm

n�mþ1 associated with the Padé approximants of

type ðn � 1;m þ 1Þ and ðn;mÞ; respectively, have the stable indices.

Moreover, the first essential polynomial R
ðn;mÞ
1 ðzÞ of the sequence anþm

n�mþ1 can be

taken as the second essential polynomial R
ðn�1;mþ1Þ
2 ðzÞ of the sequence anþm

n�m�1:

Conversely, for the sequence anþm
n�m�1 there exists unique, up to a constant factor, the

second essential polynomial R
ðn�1;mþ1Þ
2 ðzÞ such that its degree is less than or equals m:

This polynomial can be taken as the first essential polynomial R
ðn;mÞ
1 ðzÞ of anþm

n�mþ1:

In conclusion of the section we note that the determination of indices and essential
polynomials of a sequence is equivalent to solving the problem of the Wiener–Hopf
factorization for a triangular 2
 2 matrix function (see [1,7]). Hence the Padé
approximation problem is also equivalent to this factorization problem.

4. Explicit construction of denominators of Padé approximants for rational functions

Throughout what follows, we will consider the ðl� 1Þth row of the Padé table and
now we will omit the subscript m ¼ l� 1:
As we will show in Section 8, the study of a convergence of QnðzÞ for a

meromorphic function aðzÞ is reduced to the same problem for the rational part rðzÞ
of aðzÞ: In this section we find the denominators QnðzÞ for rðzÞ: By result of Section 3,
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we have to study the indices and essential polynomials of the sequence rnþm
n�mþ1 for

m ¼ l� 1:
First we describe in what terms we will solve this problem. Let rðzÞ be a strictly

proper rational function which is analytic at the origin. Let us represent it as the
fraction of coprime polynomials NðzÞ and DðzÞ:

rðzÞ ¼ NðzÞ
DðzÞ;

where DðzÞ ¼ ðz � z1Þs1?ðz � zcÞsc ¼ zl þ dl�1z
l�1 þ?þ d0 and deg NðzÞol:

Since the polynomials NðzÞ and DðzÞ are coprime, there exist polynomials U0ðzÞ;
V0ðzÞ such that

U0ðzÞDðzÞ þ V0ðzÞNðzÞ ¼ 1: ð4:1Þ

This equation is called the Bezout equation and its solution ðU0ðzÞ;V0ðzÞÞ can be
found by the Euclidean algorithm. Moreover, it is well known that we can choose
U0ðzÞ; V0ðzÞ in such a way that deg V0ðzÞol: In this case the solution ðU0ðzÞ;V0ðzÞÞ
is unique and is called the minimal solution of the Bezout equation. (The terminology
is borrowed from system theory, where the matrix Bezout equation is widely used.)
Now let us consider the equation

UkðzÞDðzÞ þ VkðzÞNðzÞ ¼ zk; kX0: ð4:2Þ

This equation will be called the Bezout equation of order k: A solution of Eq. (4.2)
such that deg VkðzÞol is said to be minimal.

Proposition 4.1. For all kX0 Eq. (4.2) has a unique minimal solution that can be found

by the recurrence formula
Vkþ1ðzÞ ¼ zVkðzÞ � vkDðzÞ; Ukþ1ðzÞ ¼ zUkðzÞ þ vkNðzÞ; kX0: ð4:3Þ

Here vk is the coefficient of zl�1 in VkðzÞ; i.e. the formal leading coefficient of VkðzÞ:
Moreover, for kX2l� 1 degree of the polynomial UkðzÞ is k � l and the leading

coefficient of this polynomial equals 1.

Proof. Let UkðzÞ; VkðzÞ be the polynomials determined by Eq. (4.3) and the initial
minimal solution ðU0ðzÞ;V0ðzÞÞ: Obviously, degVkðzÞpl� 1 and ðUkðzÞ;VkðzÞÞ is a
solution of Eq. (4.2). Hence a minimal solution exists.

Assume now that there exists another minimal solution ðŨkðzÞ; ṼkðzÞÞ: Then
ðUkðzÞ � ŨkðzÞÞDðzÞ ¼ ðṼkðzÞ � VkðzÞÞNðzÞ:

Denote WðzÞ ¼ ½ṼkðzÞ � VkðzÞ�D�1ðzÞ: Hence,
UkðzÞ � ŨkðzÞ ¼ WðzÞNðzÞ; ṼkðzÞ � VkðzÞ ¼ WðzÞDðzÞ:

Multiplying these equations by V0ðzÞ and U0ðzÞ; respectively, and summing, we obtain
WðzÞ ¼ ½UkðzÞ � ŨkðzÞ�V0ðzÞ þ ½ṼkðzÞ � VkðzÞ�U0ðzÞ;

i.e. WðzÞ is a polynomial. But since deg½ṼkðzÞ � VkðzÞ�odeg DðzÞ ¼ l; the equality
ṼkðzÞ � VkðzÞ ¼ WðzÞDðzÞ is possible iff WðzÞ 	 0: Hence ṼkðzÞ ¼ VkðzÞ; ŨkðzÞ ¼
UkðzÞ:
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It remains to prove the last statement of the proposition. Let kX2l� 1: Since
deg VkðzÞNðzÞp2l� 2; then degUkðzÞDðzÞ ¼ k: Hence deg UkðzÞ ¼ k � l; and the
leading coefficient of UkðzÞ is 1. This completes the proof. &

Now we can obtain the indices and essential polynomials of the sequence rnþl�1
n�lþ2 ¼

frn�lþ2; rn�lþ3;y; rnþl�1g consisting of the Taylor coefficients of a rational function
rðzÞ: This sequence is required for a determination of the denominators QnðzÞ of the
Padé approximant of type ðn; l� 1Þ for rðzÞ:

Theorem 4.1. For nXl the sequence rnþl�1
n�lþ2 has the stable indices n; n þ 1 and the

essential polynomials R1ðzÞ ¼ VnþlðzÞ; R2ðzÞ ¼ DðzÞ: Moreover, the test number of

R1ðzÞ; R2ðzÞ is s0 ¼ �1:

Proof. First we verify that

VnþlðzÞANnþ1ðrnþl�1
n�lþ2Þ; DðzÞANnþ2ðrnþl�1

n�lþ2Þ:

From the Bezout equation (4.2) we have

rðzÞVnþlðzÞ þ UnþlðzÞ ¼ znþlD�1ðzÞ ¼ OðznþlÞ; z-0: ð4:4Þ

Since ðUnþlðzÞ;VnþlðzÞÞ is the minimal solution, from Proposition 4.1 we get

degVnþlðzÞpl� 1; deg UnþlðzÞ ¼ n:

Hence VnþlðzÞ is the denominator of the classical Padé approximant pnðzÞ of type
ðn; l� 1Þ for rðzÞ: Thus VnþlðzÞANnþ1ðrnþl�1

n�lþ2Þ:
Let us prove the second inclusion. Polynomials in Nnþ2ðrnþl�1

n�lþ2Þ have formal

degree l: Degree of DðzÞ is also l: It follows from the equality

rðzÞDðzÞ ¼ NðzÞ

that the coefficients of zl; zlþ1;y in the power series rðzÞDðzÞ are equal to zero
because deg NðzÞpl� 1: This means that

sfz�iDðzÞg ¼ 0; i ¼ l; lþ 1;y : ð4:5Þ

For a polynomial RðzÞ in Nnþ2ðrnþl�1
n�lþ2Þ the following orthogonality conditions

sfz�iRðzÞg ¼ 0; i ¼ n þ 2; n þ 3;y; n þ l� 1:

must be fulfilled. Therefore for nXl the polynomial DðzÞ really belongs to the space

Nnþ2ðrnþl�1
n�lþ2Þ: We note that if l ¼ 2; i.e. if rnþ1

n ¼ frn; rnþ1g; then the orthogonality

conditions are absent, and the space Nnþ2ðrnþ1
n Þ coincides with the space of all

polynomials of formal degree 2 (see Section 3).
Now we put m1 ¼ n; m2 ¼ n þ 1; R1ðzÞ ¼ VnþlðzÞ; R2ðzÞ ¼ DðzÞ and calculate the

test number s0: In our case

s0 ¼ sfz�nVnþlðzÞg � vnþlsfz�n�1DðzÞg;
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where vnþl is the (formal) leading coefficient of VnþlðzÞ: For nXl; by virtue of

Eq. (4.5), sfz�n�1DðzÞg ¼ 0: The number sfz�nVnþlðzÞg is the coefficient of zn in the
power series rðzÞVnþlðzÞ: From (4.4) we see that this coefficient coincides with the
leading coefficient of UnþlðzÞ with the opposite sign. Hence s0 ¼ �1: Then n; n þ 1
are indices and VnþlðzÞ; DðzÞ are the essential polynomials of the sequence

rnþl�1
n�lþ2: &

Thus we obtain the sequence of denominators QnðzÞ ¼ VnþlðzÞ: Now we find an
explicit formula for VkðzÞ in terms of vk:

Theorem 4.2. The polynomials VkðzÞ satisfy the following linear difference equation

VkþlðzÞ þ dl�1Vkþl�1ðzÞ þ?þ d0VkðzÞ ¼ 0; kX0; ð4:6Þ

where DðzÞ ¼ zl þ dl�1z
l�1 þ?þ d0: Moreover,

VkðzÞ ¼
Xl
j¼1

Xj

i¼1
dl�iþ1vkþj�iz

l�j ; kX0: ð4:7Þ

Proof. From the recurrence formula

Vkþ1ðzÞ ¼ zVkðzÞ � vkDðzÞ; kX0;

it follows that

VkþiðzÞ ¼ ziVkðzÞ �
Xi�1
j¼0

vkþi�j�1z
jDðzÞ; iX1:

Multiplying this equation by di and summing by i from 0 to l; we getXl
i¼0

diVkþiðzÞ ¼ DðzÞ VkðzÞ �
Xl
i¼1

Xi�1
j¼0

divkþi�j�1z
j

" #
:

Suppose that the polynomial in the square brackets is nonzero. Then degree of the
left-hand side of the above equality is less than or equals l� 1; while the right-hand
side has degree Xl: Since this is impossible, we obtainXl

i¼0
diVkþiðzÞ ¼ 0

and

VkðzÞ ¼
Xl
i¼1

Xi�1
j¼0

divkþi�j�1z
j : ð4:8Þ

After the inversion of the order of summation and change of the index of summation
in the last equation, we arrive at formula (4.7). &
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To study an asymptotic behavior of VnþlðzÞ we must investigate a behavior of the
leading coefficients vk as k-N: Comparison of the coefficients of zl�1 in Eq. (4.6)
yields

vkþl þ dl�1vkþl�1 þ?þ d0vk ¼ 0; kX0: ð4:9Þ
Thus the sequence of the leading coefficients vk of the polynomials VkðzÞ is also a

solution of a linear difference equation. By the theorem on the structure of the
general solution of a linear difference equation with constant coefficients (see, e.g.,
[16]), we obtain

vk ¼ p1ðkÞzk
1 þ?þ pcðkÞzk

c ; kX0: ð4:10Þ

Here z1;y; zc are the distinct zeros of DðzÞ ¼ ðz � z1Þs1?ðz � zcÞsc ; and pjðkÞ ¼
C0

j þ C1
j k þ?þ C

sj�1
j ksj�1 is a polynomial in k of formal degree sj � 1:

It remains to determine the polynomials pjðkÞ via the initial polynomial V0ðzÞ:
First we will find initial value v0; v1;y; vl�1 for Eq. (4.9) via the coefficients of the

polynomial V0ðzÞ: Let V0ðzÞ ¼ a0zl�1 þ a1zl�2 þ?þ al�1: On the other hand, by
Theorem 4.2,

V0ðzÞ ¼ v0z
l�1 þ ðv1 þ dl�1v0Þzl�2 þ?þ ðvl�1 þ d1vl�2 þ?þ d1v0Þ:

Equate the coefficients of the same degrees of z: This yields the system of equations
from which we obtain

v0

v1

^

vl�1

0BBB@
1CCCA ¼ T�1

a0
a1
^

al�1

0BBB@
1CCCA; ð4:11Þ

where

T ¼

1 0 y 0

dl�1 1 y 0

^ ^ & ^

d1 d2 y 1

0BBB@
1CCCA:

To find the coefficients of the polynomials pjðzÞ by the initial conditions it is

necessary to solve the system

p1ð0Þ þ p2ð0Þ þ?þ pcð0Þ ¼ v0

p1ð1Þz1 þ p2ð1Þz2 þ?þ pcð1Þzc ¼ v1

y

p1ðl� 1Þzl�11 þ p2ðl� 1Þzl�12 þ?þ pcðl� 1Þzl�1c ¼ vl�1: ð4:12Þ
The matrix of this system is the column generalized Vandermonde matrix Wc

determined by the polynomial DðzÞ (see, e.g., [15]). The structure of Wc can be

described as follows. Let us introduce the block column ½Wc� j corresponding to the
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zero zj of the polynomial DðzÞ: This column is the l
 sj matrix

½Wc� j ¼

1 0 y 0

zj zj y zj

z2j 2z2j y 2sj�1z2j

y

zl�1j ðl� 1Þzl�1j y ðl� 1Þsj�1zl�1j

0BBBBBBB@

1CCCCCCCA:

Then

W ¼ ð½Wc�1 ½Wc�2 y ½Wc�cÞ:

It is known that Wc is invertible [15].
In an analogous manner we define the row generalized Vandermonde matrix Wr:

Wr ¼
½Wr�1
^

½Wr�c

0B@
1CA;

where

½Wr�j ¼

ðl� 1Þsj�1zl�1j y 2sj�1z2j zj 0

y

ðl� 1Þzl�1j y 2z2j zj 0

zl�1j y z2j zj 1

0BBBBB@

1CCCCCA:

Now if we denote by pj the column consisting of the coefficients of the polynomial

pjðkÞ; then the solution of system (4.12) is

p1

^

pc

0B@
1CA ¼ W�1

c

v0

v1

^

vl�1

0BBB@
1CCCA: ð4:13Þ

Thus we obtain the polynomial pjðkÞ via V0ðzÞ: Hence we have explicitly

constructed VkðzÞ via V0ðzÞ:
As we will see in Section 6, the asymptotic behavior of vk is determined by the

leading coefficients C
sj�1
j of the polynomials pjðkÞ for j ¼ 1;y; n: For brevity, we

will write Cj instead of C
sj�1
j : Let us calculate Cj and prove the important inequalities

Cja0 for all j ¼ 1;y; c: To do this, at first we introduce the operator @ on the set of

polynomials X ðzÞ ¼ x0 þ x1z þ?þ xnzn by the formula

@XðzÞ ¼ zX 0ðzÞ:

It is easily seen that @ possesses all properties of the operator of differentiation and

@kXðzÞ ¼ x1z þ 2kx2z
2 þ?þ nkxnzn; kX0:
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Moreover, the polynomials @kX ðzÞ can be used for the definition of multiplicity of
a nonzero root of XðzÞ instead of the derivatives X ðkÞðzÞ:

Lemma 4.1. Let z0a0: Then z ¼ z0 is a root of X ðzÞ of multiplicity r if and only if

X ðz0Þ ¼ @Xðz0Þ ¼ ? ¼ @r�1X ðz0Þ ¼ 0; @rXðz0Þa0:

The proof is trivial because the polynomials @kXðzÞ are linearly expressed in terms
of zX 0ðzÞ;y; zkX ðkÞðzÞ:

@kXðzÞ ¼
Xk

i¼1
aikziX ðiÞðzÞ;

where akk ¼ 1; and conversely

X ðkÞðzÞ ¼ z�k
Xk

i¼1
bik@

iX ðzÞ:

Theorem 4.3. Let Aj be the coefficient of ðz � z0Þ�sj in the Laurent series in a

neighborhood of the pole z ¼ zj for the function aðzÞ:
Then

Cj ¼
1

ðsj � 1Þ!zsj�1
j D2

j ðzjÞAj

; ð4:14Þ

where DjðzÞ ¼ DðzÞ
ðz�zjÞsj ; 1pjpc:

Proof. It follows from (4.11), (4.13) that

a0
a1
^

al�1

0BBB@
1CCCA ¼ TWc

p1

p2

^

pc

0BBB@
1CCCA: ð4:15Þ

Multiply this equation by the row generalized Vandermonde matrix Wr: Since

½Wr�j

a0
a1
^

al�1

0BBB@
1CCCA ¼

@sj�1V0ðzjÞ
^

@V0ðzjÞ
V0ðzjÞ

0BBB@
1CCCA; ð4:16Þ
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we obtain

V0ðz1Þ
^

V0ðzcÞ

0B@
1CA ¼ WrTWc

p1

^

pc

0B@
1CA:

Here V0ðzjÞ is the vector in the right-hand side of Eq. (4.16). From this formula we

get

V0ðzjÞ ¼ ½WrTWc�Nj

p1

^

pc

0B@
1CA; ð4:17Þ

where ½WrTWc�Nj
is the Njth row of WrTWc and Nj ¼ s1 þ?þ sj:

Let us find the row

½WrTWc�Nj
¼ ½Wr�Nj

TWc ¼ ðzl�1j y z1 1ÞTWc:

Denote

ðzl�1j y z1 1ÞT ¼ ðh1 h2 y hlÞ;

where hk ¼
Pl

n¼k dnzn�k
j : Let Mi

j ðzÞ be the product of this row multiplied by the

column

0

z

2iz2

^

ðl� 1Þi
zl�1

0BBBBBB@

1CCCCCCA:

Then

Mi
j ðzÞ ¼

Xl
k¼2

hkðk � 1Þi
zk�1:

If we substitute hk in the above formula and invert the order of summation, we
obtain

Mi
j ðzÞ ¼

Xl
n¼2

dn

Xn

k¼2
ðk � 1Þi

zn�k
j zk�1 ¼

Xl
n¼2

dn@
i
Xn

k¼2
zn�k

j zk�1

¼ @i
Xl
n¼2

dn

Xn

k¼2
zn�k

j zk�1:
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Since
Pn

k¼2 zn�k
j zk�1 ¼ z

zn�1�zn�1
j

z�zj
; we have

Mi
j ðzÞ ¼ @i 1

z � zj

Xl
n¼2

dnzn � z

zj

Xl
n¼2

dnzn
j

 !" #

¼ @i 1

z � zj

DðzÞ � d1z � d0 �
z

zj

ðDðzjÞ � d1zj � d0Þ
� �� �

¼ @i DðzÞ
z � zj

þ d0

zj

� �
¼ @i DðzÞ

z � zj

:

The polynomial DðzÞ
z�zj

has the roots z ¼ zk ðkaj; 1pkpcÞ of multiplicity sk and

z ¼ zj of multiplicity sj � 1: Hence, by Lemma 4.1, we get

Mi
j ðzkÞ ¼ 0; kaj; 1pkpc; i ¼ 1; 2;y; sk � 1

and

Mi
j ðzjÞ ¼ 0; i ¼ 1; 2;y; sj � 2;

M
sj�1
j ðzjÞ ¼ @sj�1 DðzÞ

z � zj

����
z¼zj

¼ z
sj�1
j

DðzÞ
z � zj

� �ðsj�1Þ
�����
z¼zj

a0:

Let us find the last derivative. Since

DðzÞ
z � zj

¼ ðz � zjÞsj�1DjðzÞ;

by the Leibniz rule, we have

DðzÞ
z � zj

� �ðsj�1Þ
¼
Xsj�1

k¼0

sj � 1

k

 !
ððz � zjÞsj�1ÞðkÞDðsj�k�1Þ

j ðzÞ:

Therefore

DðzÞ
z � zj

� �ðsj�1Þ
�����
z¼zj

¼ ðsj � 1Þ!DjðzjÞ:

Thus

M
sj�1
j ðzjÞ ¼ ðsj � 1Þ!zsj�1

j DjðzjÞ:

It is not difficult to verify that the formulas for Mi
j ðzÞ hold also for i ¼ 0:
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The result is

½WrTWc�Nj
¼ ð0 y 0 ðsj � 1Þ!zsj�1

j DjðzjÞ 0 y 0Þ;

where nonvanishing element has the number Nj : From Eq. (4.17) we obtain

V0ðzjÞ ¼ ðsj � 1Þ!zsj�1
j DjðzjÞCj; j ¼ 1;y; c:

It follows from the Bezout equation that

V0ðzjÞ ¼
1

NðzjÞ
:

Hence

Cj ¼
1

ðsj � 1Þ!zsj�1
j DjðzjÞNðzjÞ

; j ¼ 1;y; c:

Let us decompose the strictly proper rational function rðzÞ ¼ NðzÞ
DðzÞ into the sum of

partial rational fractions, and let Aj be the coefficient of ðz � zjÞ�sj in this

decomposition. Then NðzjÞ ¼ AjDjðzjÞ and we arrive at the final result

Cj ¼
1

ðsj � 1Þ!zsj�1
j D2

j ðzjÞAj

; j ¼ 1;y; c:

The theorem is proved. &

As an evident consequence of this theorem we note that all coefficients Cj are

nonzero.

5. Explicit construction of parameter group

In this section we prove Theorem 2.1 on the monothetic subgroup F of the torus
Tn:
In order to obtain the asymptotic of the minimal solution VkðzÞ as k-N; we must

study the asymptotic of the solution vk of linear difference equation (4.9). This
solution is of the form

vk ¼ p1ðkÞzk
1 þ?þ pcðkÞzk

c ;

and its asymptotic will be defined by the limiting behavior of xk; k-N: Here

z1 ¼ re2piY1 ;y; zn ¼ re2piYn and x ¼ ðe2piY1 ;y; e2piYnÞATn: Hence we need the

closure F of the cyclic group fxkgkAZ: F is a monothetic subgroup of the torus Tn:
We will use the standard group-theoretic technique that is applied for a proof of

the Kronecker theorem on Diophantine approximations (see, e.g., [13,26]).

Proof of Theorem 2.1. The group T (the unit circle in complex plane C) is
identified with R=Z: Let us introduce the subgroup G of the group Rn generated by
the point Y ¼ ðY1;y;YnÞARn and the vectors e1;y; en forming the standard
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basis of Rn:

G ¼fm1e1 þ?þ mnen þ mYgðm1;y;mn;mÞAZnþ1

¼fðm1 þ mY1;y;mn þ mYnÞgðm1;y;mn;mÞAZnþ1 :

Then the group G=Zn is isomorphic to the cyclic group fnYgnAZ generated by Y:

Now the group F may be identified with the group ðG=ZnÞ ¼ %G=Zn: Here %G is the
closure of the group G in Rn: It is well known (see, e.g., [26, Proposition 40]) that

%G ¼ ðG>Þ>; where G> is the annihilator of G in Rn; i.e. a subgroup of the dual

group #Rn consisting of characters wA #Rn such that wðgÞ ¼ 0 for all g ¼ ðg1;y; gnÞAG:
Recall that we identify T with R=Z and therefore the identity element of T is the

coset of 0 in R=Z:Moreover, the dual group #Rn is identified in a natural way with Rn:
Thus,

G> ¼ ðx1;y; xnÞARn
Xn
j¼1

xjgjAZ; gAG

�����
( )

:

From the definition of G it is easily seen that G> is a subgroup of Zn and

G> ¼ ðh1;y; hnÞAZn
Xn
j¼1

hjYjAZ

�����
( )

:

Now we construct a basis of G>: Denote Y0 ¼ 1 and introduce the subgroup L of

Znþ1:

L ¼ ðh0;y; hnÞAZnþ1
Xn
j¼0

hjYj ¼ 0

�����
( )

:

Then G> ¼ pr L; where prðh0;y; hnÞ ¼ ðh1;y; hnÞ:
Put the poles z1;y; zn in such order that Y0 ¼ 1;Y1;y;Yr ð0prpnÞ is a

maximal linearly independent over Q subsystem of the system Y0;Y1;y;Yn: If

r ¼ n; then, obviously, G> ¼ 0: Hence %G ¼ ðG>Þ> ¼ Rn and F ¼ Tn: Let ron and

Yj ¼
Xr

k¼0
qkjYk; qkjAQ; j ¼ r þ 1;y; n:

Taking into account the linear independence over Q of Y0;Y1;y;Yr; we see that in
order to find L it is necessary to obtain integer solutions of the system

hj þ
Xn

k¼rþ1
qjkhk ¼ 0; j ¼ 0; 1;y; r: ð5:1Þ

Let ajj be the least common multiple of the denominators of the rational fractions

qj;rþ1;y; qj;n and ajk ¼ ajjqjk for j ¼ 0;y; r; k ¼ r þ 1;y; n: Then system (5.1) can

be rewritten in the integer form

ajjhj þ
Xn

k¼rþ1
ajkhk ¼ 0; j ¼ 0; 1;y; r: ð5:2Þ
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Denote by A the integer matrix

a00 y 0 a0;rþ1 y a0n
^ & ^ ^ ^

0 y arr ar;rþ1 y arn

0B@
1CA

of this system. Obviously, rank A ¼ r þ 1: To solve system (5.2) we reduce A to the
Smith form over the ring Z:

A ¼ S1DS�1
2 ;

where S1; S2 are invertible over Z integer matrices and

D ¼
a0 ? 0 0 ? 0

^ & ^ ^ ^

0 ? ar 0 ? 0

0B@
1CA:

We note that the integers a0;y; ar are nonzero. Hence for a solution h̃ ¼ ðh0;y; hnÞt

of system (5.2) we have ðS�1
2 h̃Þ0 ¼ ? ¼ ðS�1

2 h̃Þr ¼ 0: In addition, the elements of

ðS�1
2 h̃Þrþ1 ¼ ? ¼ ðS�1

2 h̃Þn of the column S�1
2 h̃ are integers. Thus the solution h̃ of

system (5.2) has the form

h̃ ¼ S2

0

^

0

k1

^

kn�r

0BBBBBBBBB@

1CCCCCCCCCA
;

where k1;y; kn�r are arbitrary integers, and any element h̃ of the group L can be
represented in the form

h̃ ¼ k1½S2�rþ2 þ?þ kn�r½S2�nþ1:

Recall that ½A� j is the jth column of a matrix A: Since the columns of the matrix S2

are linearly independent over Z; ½S2�rþ2;y; ½S2�nþ1 is a basis of the group L:Hence to
construct the group G ¼ pr L we need the last n rows and the last n� r columns of
the matrix S2: Let S be the integer n
 ðn� rÞ matrix obtained from S2 by deleting of

the first row and the first r þ 1 columns. Then any element h ¼ pr h̃ of the group G>

can be written as follows:

h ¼ k1½S�1 þ?þ kn�r½S�n�r;
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i.e. f½S�1;y; ½S�n�rg is a generating system of the group G>: Suppose that n1½S�1 þ
?þ nn�r½S�n�r ¼ 0; where njAZ: Then

m

0

^

0

0BBB@
1CCCA ¼ n1½S2�rþ2 þ?þ nn�r½S2�nþ1AL;

i.e. m ¼ 0: Thus n1 ¼ ? ¼ nn�r ¼ 0; and ½S�1;y; ½S�n�r is a basis of G>:

However in order to obtain %G we need a special basis of G>: To construct it, we
reduce the integer matrix S of rank n� r to the Smith form:

S ¼ T1D0T
�1
2 ; ð5:3Þ

where T1; T2 are invertible over Z integer matrices and D0 is the n
 ðn� rÞ matrix of
the form

D0 ¼

s1 ? 0

^ & ^

0 ? sn�r

0 ? 0

^ & ^

0 ? 0

0BBBBBBBBB@

1CCCCCCCCCA
:

Here s1;y; sn�r are positive integers such that si divides siþ1: These integers are
called the invariant factors of the matrix S:

Since the integer n
 n matrix T1 is invertible, the columns ½T1�1;y; ½T1�n form a

basis of the group Zn (and the vector space Rn). Moreover, s1½T1�1;y; sn�r½T1�n�r is a

basis of the subgroup G>: Indeed, from Eq. (5.3) we have

S ¼ ðs1½T1�1 y sn�r½T1�n�rÞT�1
2 :

Hence the columns of S are linear combinations of the columns

s1½T1�1;y; sn�r½T1�n�r: Thus s1½T1�1;y; sn�r½T1�n�r also is a generating system of

G>: Evidently, these columns are linearly independent over Z; and

s1½T1�1;y; sn�r½T1�n�r is the required basis of G>:

Now we can pass to a description of the subgroup %G ¼ ðG>Þ>: Since ½T �i½T � j ¼
dij ; where dij is the Kronecker delta, the rows ½T�1

1 �1;y; ½T�1
1 �n of the matrix T�1

1

form a basis of the vector space Rn which is dual with the basis ½T1�1;y; ½T1�n:
Let N be the discrete group generated by the vectors 1

s1
½T�1

1 �1;y; 1
sn�r

½T�1
1 �n�r:

N ¼ n1

s1
½T�1

1 �1 þ?þ nn�r

sn�r

½T�1
1 �n�r

� �
ðn1;y;nn�rÞAZn�r

;
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M the r-dimensional space which is spanned by the rows ½T�1
1 �n�rþ1;y; ½T�1

1 �n:
M ¼ fx1½T�1

1 �n�rþ1 þ?þ xr½T�1
1 �ngðx1;y;xrÞARr :

By virtue of invertibility of T1; we have N-M ¼ 0: Let us form the group N ’þM and
prove that

%G ¼ N ’þM: ð5:4Þ
Recall

%G ¼ ðG>Þ> ¼ XARn
Xn
j¼1

xjhjAZ; hAG>

�����
( )

;

where

X ¼ ðx1;y; xnÞARn; h ¼
h1

^

hn

0B@
1CAAG>:

Therefore if XA %G; then, taking into account that s1½T1�1;y; sn�r½T1�n�r belong to

G>; we have

XT1 ¼
n1

s1
;y;

nn�r

sn�r

; an�rþ1;y; an

� �
;

where n1;y; nn�r are integers and an�rþ1;y; an are real numbers. This means that

X ¼ n1

s1
;y;

nn�r

sn�r

; an�rþ1;y; an

� �
T�1
1 ; ð5:5Þ

i.e. XAN ’þM:
Conversely, if X has form (5.5), then

sjX ½T1� j ¼ njAZ; j ¼ 1;y; n� r:

Since fsj ½T1� jgn�r
j¼1 is a basis of G>; XhAZ for an arbitrary hAG>; that is XA %G:

Formula (5.4) is proved.
Let N0 ¼ N-Zn and M0 ¼ M-Zn: These sets are subgroups of Zn: Since the

columns ½T�1
1 �1;y; ½T�1

1 �n belong to N0 ’þM0 and generate Z
n; we have Zn ¼ N0 ’þM0:

Then %G=Zn is identified with the group ðN=N0Þ 
 ðM=M0Þ: Thus for F ¼ %G=Zn we
have

F ¼ K
 F0:

Here K ¼ N=N0 is a finite group that is the direct product of n� r cyclic groups
K1;y;Kn�r of orders s1;y; sn�r; respectively, and F0 ¼ M=M0 is isomorphic to the
torus Tr (see, e.g., [13, Chapter VII, Section 1, Item 5]).
Let us now find the invariant factors s1;y; sn�r: It is known that a compact

abelian group H is monothetic iff its dual group Ĥ is topologically isomorphic to a
subgroup of the group Td (Td is the group T endowed with the discrete topology)

(see [26, Theorem 20]). Let H0 be a closed subgroup of H: Since dðH=H0ÞðH=H0Þ is

isomorphic to the subgroup H>
0 of the group Ĥ ([26, Theorem 20]), we obtain that if
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H is monothetic, then the factor group H=H0 is also monothetic. Hence KDF=F0 is
monothetic. But this means that the finite group K is cyclic.
Thus K is a cyclic group that is the direct product of n� r cyclic groups of orders

s1;y; sn�r; where si divides siþ1:

K ¼ K1 
?
Kn�r:

Let us prove that this is possible only if

s1 ¼ ? ¼ sn�r�1 ¼ 1; sn�r ¼ s;

where s is the order of the group K: Suppose that there exists sia1 for some index i;
1pipn� r � 1: Let si ¼ pm1

1 ?pml

l be the canonical decomposition of the integer si

into the product of prime numbers. Here there is j; 1pjpl; such that mja0: Since si

divides siþ1; we have siþ1 ¼ pk1
1 ?pkl

l ; where m1pk1;y;mlpkl : Then in the

subgroup Ki ðKiþ1Þ; by the first Silow’s theorem (see, e.g., [21, Chapter 13, Section

54]), there exists a cyclic subgroup of order p
mj

j ðpkj

j Þ: Hence in the group K there

exists a subgroup which is the direct product of these cyclic groups. SinceK is a finite

cyclic group, this subgroup is a decomposable cyclic group of order p
mjþkj

j : But this is

impossible (see [21, Chapter V, Section 17]). Thus K is isomorphic to the cyclic group
Zs of order s:
It remains to find s: As is well known, the invariant factors of a matrix S are

calculated via the greatest common divisors dk of minors of order k of this matrix:
dk ¼ s1s2?sk (see [33, Chapter 12, Section 85]). Hence s is the greatest common
divisors of minors of order n� r for the matrix S:

We note that although the matrix S (i.e. a basis of G>) is not uniquely found, the
integer s does not depend on a choice of S: Thus r and s are invariants of the given
system Y0;y;Yn: It is easily seen that for r ¼ 0 (i.e. for the case when all Yj are

rational numbers) s coincides with the least common multiple of the denominators
of Yj :

Let Qj be the ðn� r þ jÞth row of the matrix T�1
1 ; j ¼ 0;y; r: For a vector Q ¼

ðq1;y; qnÞ we denote
e2piQ ¼ ðe2piq1 ;y; e2piqnÞ:

Now from formula (5.4) we see that a vector ðj1;y;jnÞ belongs to %G iff it can be
represented as follows:

ðj1;y;jnÞ ¼ n1½T�1
1 �1 þ?þ nn�r�1½T�1

1 �n�r�1 þ
n

s
Q0 þ x1Q1 þ?þ xrQr;

where n1;y; nr; n are arbitrary integers and x1;y; xr are arbitrary real numbers.
Hence a point t ¼ ðt1;y; tnÞATn belongs to F iff t is represented in the form

t ¼ e
2pinQ0

s e2pix1Q1?e2pixrQr :

Denote xn ¼ e
2pin
s ; n ¼ 0;y; s� 1; and put tk ¼ e2pixk ; k ¼ 1;y; r: Then the map

ðn; t1;y; trÞ/t ¼ xQ0

n t
Q1

1 ?tQr
r is an isomorphism of the groups Zs 
 Tr and F: The

theorem is proved. &
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It is not difficult to write a program to compute F for input A:

Let us now show that the closure of the semigroup fxkgkX0 also coincides with F:

Theorem 5.1. For any tAF there exists the sequence Lt of indices k1; k2;y; kjokjþ1;
such that

lim
k-N

ðe2pikY1 ;y; e2pikYnÞ ¼ t; kALt:

Proof. Let t ¼ ðe2pij1 ;y; e2pijnÞAF: Then ðj1;y;jnÞA %G; i.e. for any e40 there
exist integers m1;y;mn;m such that

jmYj � jj þ mjjoe

for all j ¼ 1;y; n: Let us show that we can always choose m greater than any given
NAN: Indeed, for given e first we determine m̃1;y; m̃n; m̃ such that

jm̃Yj � jj þ m̃jjo
e
2
; j ¼ 1;y; n:

For m̃XN; there is nothing to prove. Let m̃oN: Since ð0;y; 0ÞA %G; we can choose
integers l1;y; ln; l such that l40 and

jljYj þ ljo e
2ðN � m̃Þ; j ¼ 1;y; n:

Hence if we put m ¼ m̃ þ lðN � m̃Þ; mj ¼ m̃j þ lðN � m̃Þ; we obtain the inequalities

m4N and

jmYj � jj þ mjjoe:

This means that there exists a sequence Lt of increasing numbers k1; k2;y such that

lim
k-N

ðe2pikY1 ;y; e2pikYnÞ ¼ t:

The theorem is proved. &

Thus we obtain the description of the parameter group F and now we can study
the asymptotic of the minimal solutions VkðzÞ:

6. Asymptotic behavior of denominators of Padé approximants for rational functions

In this section we prove the main Theorem 2.2 while for rational functions only.
We will obtain all limit points of the suitable normalized sequence fQnðzÞg; where
QnðzÞ is the denominators of the Padé approximant of type ðn; l� 1Þ for the rational
function rðzÞ ¼ NðzÞ

DðzÞ: As we have seen in Section 4, this problem is reduced to the

study of the asymptotic of the minimal solutions VkðzÞ of the Bezout equation
because QnðzÞ ¼ VnþlðzÞ: By Theorem 4.2, the polynomials VkðzÞ are expressed via
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their leading coefficients vk: For vk we have the formula

vk ¼ p1ðkÞzk
1 þ?þ pcðkÞzk

c :

First we obtain the asymptotic for vk: Fix any point t ¼ ðt1;y; tnÞ belonging to
the group F: Let Lt be any sequence of numbers k1; k2;y; kjokjþ1 such that

lim
k-N

ðe2pikY1 ;y; e2pikYnÞ ¼ t; kALtCN:

Then it is evident that for k-N; kALt; the sequence vk has the following
asymptotic:

vk ¼ rkks�1½C1t1 þ?þ Cntn þ oð1Þ�: ð6:1Þ
Recall that r ¼ jz1j ¼ ? ¼ jzmj; s is the multiplicity z1;y; zn; and Cj is the leading

coefficient of the polynomial pjðzÞ (see formula (4.14)). Moreover, for all fixed jX�
k we have

vkþj ¼ rkks�1½C1z
j
1t1 þ?þ Cnz

j
n tn þ oð1Þ�; k-N; kALt: ð6:2Þ

Denote

SjðtÞ ¼ C1z
j
1t1 þ?þ Cnz

j
n tn; tAF: ð6:3Þ

If S0ðtÞa0; then there exists

lim
k-N

vkþj

vk

¼ SjðtÞ
S0ðtÞ

; kALt:

We note that if the roots of DðzÞ have distinct moduli, then we can take Lt ¼ N and
the above equality is the elementary case of the Pouncaré theorem (see [16, Chapter
V, Section 5.1]).
If S0ðtÞa0; then the point t ¼ ðt1;y; tnÞAF is called regular with respect to the

system of the poles z1;y; zn:
We study singular points. Since the Vandermonde matrix is invertible, from

formula (6.3) and the inequalities Cja0 we immediately obtain

Proposition 6.1. For any k in the sequence SkðtÞ;Skþ1ðtÞ;y;Skþn�1ðtÞ there exists at

least one nonzero number.

Definition 6.1. The nonnegative integer dþðtÞ ðd�ðtÞÞ will be called the plus-defect
(minus-defect) of the point tAF if dþðtÞ ðd�ðtÞÞ is the least nonnegative integer such
that SdþðtÞðtÞa0 ðS�d�ðtÞ�1ðtÞa0Þ:

Thus if dþðtÞ ¼ 0 ðd�ðtÞ ¼ 0Þ; then S0a0 ðS�1a0Þ: In the case
dþðtÞ40 ðd�ðtÞ40Þ we have

S0 ¼ ? ¼ SdþðtÞ�1 ¼ 0; SdþðtÞa0

ðS�1 ¼ ? ¼ S�d�ðtÞ ¼ 0; S�d�ðtÞ�1a0Þ:
It follows from Proposition 6.1 that 0pdþðtÞpn� 1; 1pd�ðtÞpn: If t is fixed, then
for brevity we will write dþ; d� instead of dþðtÞ; d�ðtÞ:
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Let dþ be the plus-defect of the point tAF: Then from asymptotic (6.2) we obtain

lim
k-N

vkþj

vkþdþ
¼ Sj

Sdþ
; kALt: ð6:4Þ

We are now ready to study the asymptotic of the minimal solutions.

Theorem 6.1. Let t be an arbitrary point of the group F and let Lt be a sequence of

indices corresponding to t:
Then, for all kALt sufficiently large the polynomial VkðzÞ can be ðl� dþ � 1Þ-

normalized and there exists

lim
k-N

V
ðl�dþ�1Þ
k ðzÞ ¼ Wðz; tÞ; kALt:

Here V
ðl�dþ�1Þ
k ðzÞ is the ðl� dþ � 1Þ-normalized polynomial VkðzÞ; Wðz; tÞ is a

polynomial of degree l� dþ � 1 which has z ¼ 0 as a root of multiplicity d�: This

polynomial is computed by the formula:

Wðz; tÞ ¼ S�1
dþ ðtÞoðz; tÞðz � z1Þs1�1

yðz � znÞsn�1ðz � znþ1Þsnþ1
yðz � zcÞsc ;

oðz; tÞ ¼
Xn
j¼1

CjDjðzÞtj ; Dj ¼
DðzÞ
z � zj

; DðzÞ ¼ ðz � z1Þyðz � znÞ: ð6:5Þ

Proof. By formula (4.7), the coefficient of zl�dþ�1 in the polynomial VkðzÞ is found
as follows:

ak;l�dþ�1 ¼
Xdþþ1
i¼1

dl�iþ1vkþdþ�iþ1:

From asymptotic (6.2) it follows that for all kALt sufficiently large the coefficient
vkþdþ is nonzero. Therefore,

ak;l�dþ�1 ¼ vkþdþbk;l�dþ�1;

where

bk;l�dþ�1 ¼ 1þ dl�1
vkþdþ�1
vkþdþ

þ?þ dl�dþ
vk

vkþdþ
:

From the definition of the defect dþ and formula (6.4) we have

lim
k-N

vkþdþ�1
vkþdþ

¼ ? ¼ lim
k-N

vk

vkþdþ
¼ 0; kALt:

Hence limk-N bk;l�dþ�1 ¼ 1; kALt; and ak;l�dþ�1 is nonzero for all kALt

sufficiently large. Thus the polynomial VkðzÞ can be really ðl� dþ � 1Þ-normalized.

In order to obtain the normalized polynomial V
ðl�dþ�1Þ
k ðzÞ we use formula (4.8):

V
ðl�dþ�1Þ
k ðzÞ ¼ b�1k;l�dþ�1

Xl
i¼1

Xi�1
j¼0

di

vkþi�j�1
vkþdþ

z j:
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Consequently there exists

lim
k-N

V
ðl�dþ�1Þ
k ðzÞ ¼ S�1

dþ

Xl
i¼1

Xi�1
j¼0

diSi�j�1z
j; kALt:

This limit we will denote by Wðz; tÞ: It is easily seen that the coefficient Wl�j of zl�j

in the polynomial Wðz; tÞðzÞ is

Wl�j ¼ S�1
dþ

Xj

i¼1
dl�iþ1 Sj�i:

By the definition of the defect dþ; we have

S0 ¼ ? ¼ Sdþ�1 ¼ 0; Sdþa0:

Hence Wl�j ¼ 0 for j ¼ 1;y; dþ and Wl�dþ�1 ¼ 1: Thus the degree of Wðz; tÞ
coincides with l� dþ � 1 and the leading coefficient equals 1.

Let us obtain formula (6.5) for Wðz; tÞ: First we find
Pi�1

j¼0 Si�j�1z
j: Taking into

account definition (6.3) for Si�j�1; we getXi�1
j¼0

Si�j�1z
j ¼

Xi�1
j¼0

Xn
l¼1

Cltlz
i�j�1
l z j ¼

Xn
l¼1

Cltl

Xi�1
j¼0

z
i�j�1
l z j ¼

Xn
l¼1

Cltl

zi � zi
l

z � zl

:

Therefore,

Wðz; tÞ ¼S�1
dþ

Xl
i¼1

Xn
l¼1

diCltl

zi � zi
l

z � zl

¼ S�1
dþ

Xn
l¼1

Cltl

z � zl

Xl
i¼0

diðzi � zi
lÞ

¼S�1
dþ

Xn
l¼1

Cltl

DðzÞ
z � zl

:

Since

DðzÞ ¼ DðzÞðz � z1Þs1�1
yðz � znÞsn�1ðz � znþ1Þsnþ1

yðz � zcÞsc ;

we arrive at formula (6.5).
It remains to prove that d� is the multiplicity of z ¼ 0 as a root of the polynomial

Wðz; tÞ: Obviously, the polynomials Wðz; tÞ; oðz; tÞ and the analytic functionPn
j¼1

Cjtj

z�zj
have z ¼ 0 as a root of the same multiplicity. Expanding the functionPn

j¼1
Cjtj

z�zj
into a series in power of z; we obtainXn

j¼1

Cjtj

z � zj

¼ S�1 þ S�2z þ S�3z
2 þ?:

By the definition of d�; we haveXn
j¼1

Cjtj

z � zj

¼ S�d��1z
d� þ S�d��2z

d�þ1 þ?:
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This means that d� is the multiplicity of z ¼ 0 as a root of Wðz; tÞ: The theorem is
proved. &

Thus the asymptotic of the minimal solutions VkðzÞ is obtained.

7. Preparation Theorem

In this section we prove the preparation theorem that allows to reduce the study of
the asymptotic behavior of the denominators QnðzÞ of the Padé approximants for a
meromorphic function aðzÞ to the same problem for the rational part rðzÞ of aðzÞ:
Let aðzÞ be a function which is meromorphic in the disk jzjoR and analytic at the

origin. Without loss of generality we may suppose that R41: Let rðzÞ be the sum of
the principal parts of the Laurent series of aðzÞ in neighborhoods of the poles of aðzÞ
(the rational part of aðzÞ). Obviously, rðzÞ is a strictly proper rational function that is
analytic at z ¼ 0: Let us represent aðzÞ as follows:

aðzÞ ¼ bðzÞ þ rðzÞ;
where the function bðzÞ is analytic in jzjoR: Expand these functions into the Taylor
series in power of z:XN

j¼0
ajz

j ¼
XN
j¼0

rjz
j þ
XN
j¼0

bjz
j:

In order to construct denominator of the Padé approximant of type ðn;mÞ we need
the sequence anþm

n�mþ1 ¼ fan�mþ1; an�mþ2;y; anþmg: We will consider this sequence as

a perturbation of the sequence rnþm
n�mþ1 by the sequence bnþm

n�mþ1: Since the last sequence

is infinitesimal as n-N; it can be really regarded as a small perturbation. We
consider the smallness with respect to the following norms.

For matrices in C l
k we will use the norm

jjAjj ¼ max
1pjpl

Xk

i¼1
jAij j;

and for a sequence cN
M ¼ fcM ; cMþ1;y; cNg we introduce

jjcN
M jj ¼

XN

i¼M

jcij:

We will use the same norm for the generating polynomial cN
MðzÞ ¼ cMzM þ

cMþ1z
Mþ1 þ?þ cNzN of this sequence. It is easily seen that for the Toeplitz

matrix TkðcN
MÞ ðMpkpNÞ holds

jjTkðcN
MÞjjpjjTMðcN

MÞjj ¼ jjcN
M jj:

By results of Section 3, to study of the asymptotic behavior of the denominators
QnðzÞ of the Padé approximants of type ðn; l� 1Þ; we must investigate the behavior
of the indices and essential polynomials for the sequence anþl�1

n�lþ2: The indices and
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essential polynomials of the nonperturbed sequence rnþl�1
n�lþ2 we have already found

(see Section 4). Now we prove that the indices of anþl�1
n�lþ2 are equal to the indices of

rnþl�1
n�lþ2; and the essential polynomials of these sequences are infinitesimally close.

To prove this, we need the lemma on the continuity of projectors on the kernels of
Fredholm operators. We reformulate this well-known result (see, e.g., [17, Theorem
11.3]) in the form that is suitable for us.

Lemma 7.1. Let A be a right invertible operator from a Banach space E1 into a Banach

space E2 such that ker A is finite-dimensional. Let Aw be any right inverse of A and

PA ¼ I � AwA is the projector on ker A: Then for any operator B such that jjA �
Bjjo 1

2jjAwjj it is fulfilled:

1. B is right invertible and Bw ¼ C�1Aw is the right inverse of B: Here C ¼
I � AwðA � BÞ; C�1 ¼

P
N

i¼0ðAwðA � BÞÞi:

2. For the projector PB ¼ I � BwB ¼ C�1PAC on ker B the following inequality holds

jjPA � PBjjo4jjPAjj jjAwjj jjA � Bjj:

To apply this lemma we will need an estimate of the norm jjPAjj for A ¼
Tnþ1ðrnþl�1

n�lþ2Þ: Unfortunately, in our case the trivial estimate jjPAjjp1þ jjAwjjjjAjj is
useless. Therefore we will choose the projector PA (i.e. a right inverse of A) by a
special way.
In view of further applications to the other intermediate rows, in the following

auxiliary propositions and in Preparation Theorem we will consider arbitrary

sequences cnþm
n�mþ1 with the stable indices, where m cannot be equal to l� 1:

Proposition 7.1. Let cnþm
n�mþ1 be any sequence with the stable indices n; n þ 1: The first

essential polynomial R1ðzÞ ¼ a0 þ a1z þ?þ amzm of this sequence has the nonzero

coefficient ad if and only if the matrix Tnþ1;dþ1ðcnþm
n�mþ1Þ obtained from the m 
 ðm þ 1Þ

matrix Tnþ1ðcnþm
n�mþ1Þ by deleting of the ðd þ 1Þth column is invertible.

Suppose that this condition is fulfilled. Let R1ðzÞ ¼ a0 þ a1z þ?þ amzm be the first

essential d-normalized polynomial. Then the matrix

Pnþ1ðcnþm
n�mþ1Þ ¼

0 y a0 y 0

0 y a1 y 0

^ ^ ^

0 y am y 0

0BBB@
1CCCA ð7:1Þ

is the matrix of a projector on ker Tnþ1ðcnþm
n�mþ1Þ: Here the nonzero column has the

number d þ 1: Moreover,

Pnþ1ðcnþm
n�mþ1Þ ¼ Imþ1 � Tw

nþ1ðcnþm
n�mþ1ÞTnþ1ðcnþm

n�mþ1Þ;
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where Tw
nþ1ðcnþm

n�mþ1Þ is the right inverse of Tnþ1ðcnþm
n�mþ1Þ obtained from the matrix

T�1
nþ1;dþ1ðcnþm

n�mþ1Þ by adding the zero row in the position with the number d þ 1:

Proof. Suppose the matrix Tnþ1;dþ1ðcnþm
n�mþ1Þ is invertible but the coefficient ad of the

polynomial R1ðzÞ is zero. Since the vector R1 consisting of the coefficients of the

polynomial R1ðzÞ belongs to ker Tnþ1ðcnþm
n�mþ1Þ; we have R1ðzÞ 	 0; which is

impossible. Hence ada0:

Conversely, if ada0 and the matrix Tnþ1;dþ1ðcnþm
n�mþ1Þ is singular, then the space

ker Tnþ1ðcnþm
n�mþ1Þ contains at least two linearly independent vectors, which is also

impossible because this space is one-dimensional in virtue of the stability of the
indices.

Let Tnþ1;dþ1ðcnþm
n�mþ1Þ be an invertible matrix and ad ¼ 1: The direct calculations

show that Pnþ1ðcnþm
n�mþ1Þ is a projector. It is also obvious that

ImPnþ1ðcnþm
n�mþ1Þ ¼ spanfR1g ¼ ker Tnþ1ðcnþm

n�mþ1Þ:

Hence Pnþ1ðcnþm
n�mþ1Þ is a projector on ker Tnþ1ðcnþm

n�mþ1Þ: Since the indices of cnþm
n�mþ1

are n; n þ 1; the m 
 ðm þ 1Þ matrix Tnþ1ðcnþm
n�mþ1Þ is right invertible. Suppose the

projector Pnþ1ðcnþm
n�mþ1Þ is generated by some right inverse Tw

nþ1ðcnþm
n�mþ1Þ; i.e.,

Pnþ1ðcnþm
n�mþ1Þ ¼ Imþ1 � Tw

nþ1ðcnþm
n�mþ1ÞTnþ1ðcnþm

n�mþ1Þ:

Then from the equality

Pnþ1ðcnþm
n�mþ1ÞT

w
nþ1ðcnþm

n�mþ1Þ ¼ 0

it follows that ½Tw
nþ1ðcnþm

n�mþ1Þ�dþ1 is the zero row.

Denote by Tw
nþ1;dþ1ðcnþm

n�mþ1Þ the matrix obtained from Tw
nþ1ðcnþm

n�mþ1Þ by deleting of
this zero row. Then from the equation

Tnþ1ðcnþm
n�mþ1ÞT

w
nþ1ðcnþm

n�mþ1Þ ¼ Im

we get

Tnþ1;dþ1ðcnþm
n�mþ1ÞT

w
nþ1;dþ1ðc

nþm
n�mþ1Þ ¼ Im;

i.e. Tw
nþ1;dþ1ðcnþm

n�mþ1Þ ¼ T�1
nþ1;dþ1ðcnþm

n�mþ1Þ: This completes the proof. &

Corollary 7.1.

jjPnþ1ðcnþm
n�mþ1Þjj ¼ jjR1ðzÞjj; ð7:2Þ

where R1ðzÞ is the d-normalized first essential polynomial of the sequence cnþm
n�mþ1:

To apply Lemma 7.1, we must also obtain an estimate for the norm of the

constructed matrix Tw
nþ1ðcnþm

n�mþ1Þ: First we find an explicit formula for Tw
nþ1ðcnþm

n�mþ1Þ
in terms of the essential polynomials. Exactly here in our approach the second
essential polynomial is appeared.
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Proposition 7.2. Let cnþm
n�mþ1 be any sequence with the stable indices n; n þ 1; R1ðzÞ ¼

a0 þ a1z þ?þ amzm; R2ðzÞ ¼ b0 þ b1z þ?þ bmþ1z
mþ1 its essential polynomials,

and ad ¼ 1:

The right inverse Tw
nþ1ðcnþm

n�mþ1Þ from Proposition 7.1 has the following form

Tw
nþ1ðcnþm

n�mþ1Þ ¼ G � K ;

where

G ¼ 1

s0

a0 y 0

^ & ^

am y a0

0B@
1CA

bm y b1
bmþ1 y b2
^ & ^

0 y bmþ1

0BBB@
1CCCA

26664

�
b0 y 0

^ & ^

bm y b0

0B@
1CA

am y a1
^ & ^

0 y am

0 y 0

0BBB@
1CCCA
37775; ð7:3Þ

K ¼ gdþ1;1R1 gdþ1;2R1 y gdþ1;mR1

� �
;

½G�dþ1 ¼ gdþ1;1 gdþ1;2 y gdþ1;m
� �

; R1 ¼

a0
a1
^

am

0BBB@
1CCCA

and s0 ¼ sfz�nbmþ1R1ðzÞ � z�n�1amR2ðzÞg is the test number for R1ðzÞ; R2ðzÞ:

Proof. Since the indices cnþm
n�mþ1 are stable, the matrix Tnþ1ðcnþm

n�mþ1Þ is right invertible.
First we construct the right inverse G of Tnþ1ðcnþm

n�mþ1Þ by the formula from the work

[3] (see also [7, Corollary 7.3]). Define the generating polynomial for G ¼ jjgijjji¼0;y;m�1
j¼0;1;y;m

as follows:

Gðt; sÞ ¼
Xm�1

i¼0

Xm

j¼0
gijt

is�j:

Then Gðt; sÞ is found by the formula

Gðt; sÞ ¼ Ptð0;m � 1ÞPsð�m; 0ÞsBðt; sÞ;

where

Bðt; sÞ ¼ 1

s0
s�m R1ðtÞR2ðsÞ � R1ðsÞR2ðtÞ

1� ts�1
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is the generating function for the matrix

B ¼ 1

s0

a0 y 0

^ & ^

am y a0

0B@
1CA bmþ1 y b1

^ & ^

0 y bmþ1

0B@
1CA

264
�

b0 y 0

^ & ^

bm y b0

0B@
1CA amþ1 y a1

^ & ^

0 y amþ1

0B@
1CA
375:

Here, for convenience, we put amþ1 ¼ 0; and Pða; bÞ is the projector acting by the
formula

Pða; bÞ
Xn

i¼�m

rit
i ¼

Xb
i¼a

rit
i:

The index t means that the operator acts on the variable t:
It is easily seen that the matrix G is obtained from B by deleting the first column.

Hence for G we get formula (7.3).

The matrix Tw
nþ1ðcnþm

n�mþ1Þ ¼ G � K is also a right inverse of the matrix

Tnþ1ðcnþm
n�mþ1Þ because R1Aker Tnþ1ðcnþm

n�mþ1Þ and hence Tnþ1ðcnþm
n�mþ1ÞK ¼ 0: More-

over, since ad ¼ 1; we have ½G�dþ1 ¼ ½K �dþ1: This means that the ðd þ 1Þth row of

Tw
nþ1ðcnþm

n�mþ1Þ is zero, i.e. Tw
nþ1ðcnþm

n�mþ1Þ is obtained from T�1
nþ1;dþ1ðcnþm

n�mþ1Þ by adding

the zero row in the ðd þ 1Þth position. &

Corollary 7.2.

jjTw
nþ1ðcnþm

n�mþ1Þjjp
2

js0j
jjR1ðzÞjj jjR2ðzÞjjð1þ jjR1ðzÞjj Þ:

The proof follows immediately from the estimates

jjGjjp 2

js0j
jjR1ðzÞjj jjR2ðzÞjj;

jjK jj ¼ max
1pipm

jgdþ1;ij jjR1ðzÞjjp
2

js0j
jjR1ðzÞjj2jjR2ðzÞjj:

Now we can prove the basic result of the section.

Theorem 7.1 (Preparation Theorem). Let aðzÞ be a meromorphic function and rðzÞ its

rational part. Suppose for some fixed m there exists a sequence L of numbers

n1; n2;y; nk;y; nkonkþ1; such that the following conditions are fulfilled:

1. For all nAL the indices of the sequences rnþm
n�mþ1 are stable, i.e. are equal to n; n þ 1:

2. For all nAL there is an integer d; 0pdpm; such that there exist the d-normalized

first essential polynomials R
ðn;mÞ
1;r ðzÞ of these sequences.
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3. jjRðn;mÞ
1;r ðzÞjj are uniformly bounded by nAL:

4. For all nAL there exist the second essential polynomials R
ðn;mÞ
2;r ðzÞ of the sequences

such that jjRðn;mÞ
2;r ðzÞjj=jsðn;mÞ

0 j are uniformly bounded by nAL:

Then for all nAL sufficiently large we have

1. The indices of the sequences anþm
n�mþ1 are stable.

2. There exist the d-normalized first essential polynomials R
ðn;mÞ
1;a ðzÞ of these sequences.

3. jjRðn;mÞ
1;a ðzÞ � R

ðn;mÞ
1;r ðzÞjj-0 for n-N; nAL:

Proof. For the sequence rnþm
n�mþ1 all conditions of Proposition 7.1 are fulfilled.

Therefore for all nAL the matrix Tnþ1;dþ1ðrnþm
n�mþ1Þ is invertible. Moreover, by virtue

of Corollary 7.2 and Condition 3–4, we have

jjT�1
nþ1;dþ1ðrnþm

n�mþ1Þjjpc1;

where the constant c1 does not depend on nAL: Let us now consider the matrix

Tnþ1;dþ1ðanþm
n�mþ1Þ: The following estimate

jjTnþ1;dþ1ðanþm
n�mþ1Þ � Tnþ1;dþ1ðrnþm

n�mþ1Þjj

¼ jjTnþ1;dþ1ðbnþm
n�mþ1ÞjjpjjTnþ1ðbnþm

n�mþ1Þjjpjjbnþm
n�mþ1jj ¼

Xnþm

j¼n�mþ1
jbjj

holds. Since the series
P

N

j¼0 bjz
j is absolutely convergent on jzj ¼ 1 (recall that we

assume R41), for any e there exists a number n0 such that

jjTnþ1;dþ1ðanþm
n�mþ1Þ � Tnþ1;dþ1ðrnþm

n�mþ1Þjjoe

for n4n0; nAL: If eo1=c1; then for all nAL sufficiently large we obtain

jjTnþ1;dþ1ðanþm
n�mþ1Þ � Tnþ1;dþ1ðrnþm

n�mþ1Þjjp
1

jjT�1
nþ1;dþ1ðrnþm

n�mþ1Þjj
;

i.e. the matrix Tnþ1;dþ1ðanþm
n�mþ1Þ is also invertible. Hence for all nAL sufficiently large

rank Tnþ1ðanþm
n�mþ1Þ ¼ m and the kernel of this matrix is one-dimensional. Thus the

index m1 of the sequence anþm
n�mþ1 equals n for all nAL sufficiently large. Then m2 ¼

n þ 1: Moreover, by Proposition 7.1, the first essential polynomials R
ðn;mÞ
1;a ðzÞ of the

sequences anþm
n�mþ1 can be d-normalized.

It remains to prove Statement 3. Using the d-normalized first essential

polynomials R
ðn;mÞ
1;a ðzÞ; R

ðn;mÞ
1;r ðzÞ of the sequences anþm

n�mþ1; rnþm
n�mþ1; respectively, we

form according to Proposition 7.1 the projectors Pnþ1ðanþm
n�mþ1Þ; Pnþ1ðrnþm

n�mþ1Þ on the
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kernels of the matrices Tnþ1ðanþm
n�mþ1Þ; Tnþ1ðrnþm

n�mþ1Þ: Obviously,

jjRðn;mÞ
1;a ðzÞ � R

ðn;mÞ
1;r ðzÞjj ¼ jjPnþ1ðanþm

n�mþ1Þ �Pnþ1ðrnþm
n�mþ1Þjj:

Now we apply Lemma 7.1. Put A ¼ Tnþ1ðrnþm
n�mþ1Þ; B ¼ Tnþ1ðanþm

n�mþ1Þ and Aw ¼
Tw

nþ1ðrnþm
n�mþ1Þ: Then PA ¼ Pnþ1ðrnþm

n�mþ1Þ and for all nAL sufficiently large the

condition jjA � Bjj ¼ jjTnþ1ðbnþm
n�mþ1Þjjo 1

2jjAwjj is fulfilled. Let us prove that the

projector PB constructed in Lemma 7.1 coincides with Pnþ1ðanþm
n�mþ1Þ: To do this, we

must define more exactly the structure of the matrices C and C�1 from this lemma.
Since

C ¼ Imþ1 � Tw
nþ1ðrnþm

n�mþ1ÞTnþ1ðbnþm
n�mþ1Þ;

and ½Tw
nþ1ðrnþm

n�mþ1Þ�dþ1 is the zero row (see Proposition 7.1), we obtain that the

ðd þ 1Þth row of C has the form

½C�dþ1 ¼ ð0y0 1
dþ1

0y0Þ:

It is clear that the same form has the ðd þ 1Þth row of the matrix

C�1 ¼ Imþ1 þ
XN
j¼1

ðTw
nþ1ðrnþm

n�mþ1ÞTnþ1ðbnþm
n�mþ1ÞÞ

j:

Then

PB ¼ C�1Pnþ1ðrnþm
n�mþ1ÞC ¼

0 y � y 0

^ ^ ^

0 y 1 y 0

^ ^ ^

0 y � y 0

0BBBBBB@

1CCCCCCA:

Here only the ðd þ 1Þth column is nonzero and the element 1 is situated in the

position ðd þ 1; d þ 1Þ: Since PB is the projector on ker Tnþ1ðanþm
n�mþ1Þ; this column

belongs to ker Tnþ1ðanþm
n�mþ1Þ: Hence it coincides with the d-normalized essential

polynomial R
ðn;mÞ
1;a ðzÞ: This means that PB ¼ Pnþ1ðanþm

n�mþ1Þ:
Apply Lemma 7.1. Taking into account Corollaries 7.1 and 7.2, we get

jjPnþ1ðanþm
n�mþ1Þ �Pnþ1ðrnþm

n�mþ1Þjjoc2jjTnþ1ðbnþm
n�mþ1Þjjpc2

Xnþm

j¼n�mþ1
jbjj;

where c2 is a constant independent of nAL: Since the series
P

N

j¼0 jbjj is convergent,
we finally obtain

jjRðn;mÞ
1;a ðzÞ � R

ðn;mÞ
1;r ðzÞjj-0

as n-N; nAL: The Preparation Theorem is proved. &
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8. Asymptotic behavior of denominators of Padé approximants for meromorphic

functions

Now we are ready to prove the main result of the work (Theorem 2.2). We will see
that the asymptotic behavior of the denominators of the Padé approximants of type
ðn; l� 1Þ for a meromorphic function aðzÞ and for its rational part rðzÞ is identical.
To obtain this result, we have to verify all conditions of Preparation Theorem 7.1. In
addition to the hypothesis R41; without loss of generality we suppose that all poles
of aðzÞ lie inside the unit circle.

Proof of Theorem 2.2. Let us verify Conditions 1–4 of Preparation Theorem 7.1. We
take the sequence Lt shifted by l (because the denominator QnðzÞ for the rational
fraction rðzÞ is VnþlðzÞ) as L:
1. If m ¼ l� 1; then, by Theorem 4.1, the sequence rnþm

n�mþ1 for the rational

function rðzÞ has the stable indices n; n þ 1 and the essential polynomials

R̃
ðn;mÞ
1;r ðzÞ ¼ VnþlðzÞ; R

ðn;mÞ
2;r ðzÞ ¼ DðzÞ

for which *sðn;mÞ
0 ¼ �1:

2. By Theorem 6.1, for all sufficiently large n such that nALt � l the first essential

polynomial R̃
ðn;mÞ
1;r ðzÞ ¼ VnþlðzÞ admits the ðl� dþ � 1Þ-normalization. Let R

ðn;mÞ
1;r ðzÞ

be the ðl� dþ � 1Þ-normalized polynomial:

R
ðn;mÞ
1;r ðzÞ ¼ V

ðl�dþ�1Þ
nþl ðzÞ ¼ 1

vnþlþdþbnþl;l�dþ�1
VnþlðzÞ:

Here bnþl;l�dþ�1-1 as n-N; nALt � l (see Theorem 6.1).

Moreover, by this theorem, there exists

lim
n-N

R
ðn;mÞ
1;r ðzÞ ¼ Wðz; tÞ; nALt � l:

3. Hence the norms jjRðn;mÞ
1;r ðzÞjj are uniformly bounded by n for nALt � l:

4. The test number sðn;mÞ
0 for the essential polynomials

R
ðn;mÞ
1;r ðzÞ ¼ 1

vnþlþdþbnþl;l�dþ�1
VnþlðzÞ; R

ðn;mÞ
2;r ðzÞ ¼ DðzÞ

is found by the formula

sðn;mÞ
0 ¼ � 1

vnþlþdþ bnþl;l�dþ�1
:

Hence,

jsðn;mÞ
0 j�1jjRðn;mÞ

2;r ðzÞjj ¼ jvnþlþdþbnþl;l�dþ�1j jjDðzÞjj:

In virtue of asymptotic (6.2), we have

vnþlþdþ ¼ rnþlðn þ lÞs�1½Sdþ þ oð1Þ�:
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Then vnþlþdþ-0 as n-N; nALt � l; because r ¼ jz1jo1: Since bnþl;l�dþ�1ðzÞ-1;

the norms jsðn;mÞ
0 j�1jjRðn;mÞ

2;r ðzÞjj are uniformly bounded by n; nALt � l: Thus all

conditions of the Preparation Theorem are fulfilled.
Hence, by this theorem, the following statements hold:

1. The indices of the sequence anþm
n�mþ1 for the meromorphic function aðzÞ for all

sufficiently large n; nALt � l are stable, i.e. are equal to n; n þ 1: This means that

ker Tnþ1ðanþm
n�mþ1Þ is one-dimensional. Therefore, the denominator QnðzÞ of the Padé

approximant of type ðn; l� 1Þ for aðzÞ is unique up to multiplication by a constant

and QnðzÞ is the first essential polynomial R
ðn;mÞ
1;a ðzÞ of anþm

n�mþ1:

2. The polynomials R
ðn;mÞ
1;a ðzÞ; i.e. the denominators QnðzÞ; admit the ðl� dþ � 1Þ-

normalization.
Let QnðzÞ be such a normalized polynomial. Then we have

3. jjRðn;mÞ
1;r ðzÞ � R

ðn;mÞ
1;a ðzÞjj-0; n-N; nALt � l:

Taking into account Theorem 6.1, we finally obtain

lim
n-N

QnðzÞ ¼ lim
n-N

V
ðl�dþ�1Þ
nþl ðzÞ ¼ Wðz; tÞ; nALt � l:

It remains only to prove that the family Wðz; tÞ; tAF; exhausts all limit points of
the suitable normalized subsequences of fgnQnðzÞg; where gn is a normalizing factor.
We except the trivial cases when the limit of a subsequence of fgnQnðzÞg equals zero
or infinity. Then we can assume that a subsequence of fQnðzÞg is normalized in such

a way that the coefficient of zd in gnQnðzÞ equals 1 for some d; 0pdpm; i.e. gnQnðzÞ
is d-normalized.
Thus suppose there exists a sequence L of numbers such that for all sufficiently

large n; nAL� l; the denominators QnðzÞ can be d-normalized and there exists

lim
n-N

QðdÞ
n ðzÞ ¼ WLðzÞ; nAL� l:

(It is clear that the inequality dpdeg WLðzÞ must be fulfilled.)
Let us consider the sequence ðe2pinY1 ;y; e2pinYnÞ for nAL: Since these points lie on

the compact set Tn there is a subsequence L0DL such that there exists

lim
n-N

ðe2pinY1 ;y; e2pinYnÞ ¼ t; nAL0

for some tATn: From the definition of F it follows that tAF and hence L0 ¼ Lt:
Then, by the proved part of the theorem, we have

lim
n-N

QnðzÞ ¼ Wðz; tÞ; nALt � l:

Hence there exists A ¼ limn-N gn ¼ limn-N

Q
ðdÞ
n ðzÞ

QnðzÞ ; nALt � l:

Thus WLðzÞ ¼ AWðz; tÞ: This completes the proof. &

Thus the asymptotic of the denominators QnðzÞ is completely studied.
Proposition 2.1 follows at once from continuity of roots of polynomials. Here

we assume that QnðzÞ has the root z ¼ N of corresponding multiplicity if
deg QnðzÞol� 1:
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Proof of Theorem 2.3 is similar to the proof of the final part of de Montessus’s
theorem (see [12, Section 6.2]).
Consider some applications of Theorem 2.2. The following question is related to

the class of problems known as inverse problems: can certain of the poles of pn;mðzÞ
converge to some point which is not a singular point of aðzÞ? We answer the question
for the case m ¼ l� 1:

Proposition 8.1. If limn-N an ¼ a; where an is a pole of pn;l�1ðzÞ; then a is a pole of

aðzÞ:

Proof. Suppose that a is different from the poles z1;y; zc of the function aðzÞ: By
Theorem 2.2, since a is a limit point of the set of poles for an arbitrary subsequence
of pn;l�1ðzÞ; a is a zero of oðz; tÞ for all tAF:

Fix t ¼ ðt1;y; tnÞAF and consider the sequence t j ¼ r�jðt1z j
1 ;y; tnz j

n ÞAF; j ¼
0; 1;y . Denote ojðzÞ ¼ oðz; t jÞ: Then it is easily seen that

r jþ1ojþ1ðzÞ ¼ r jzojðzÞ � SjðtÞDðzÞ; jX0:

Hence SjðtÞDðaÞ ¼ 0: But zeros of oðz; tÞ are different from zeros z1;y; zn of DðzÞ:
Consequently DðaÞa0 and SjðtÞ ¼ 0 for jX0: However, these equalities contradict

Proposition 6.1. Hence a coincides with one of the points z1;y; zc: &

The proposition is a special case of Suetin’s theorem [30]. Some important works
in this direction are [31,32].
For another applications of Theorem 2.2 we refer to [10].

9. The geometry of the set of additional limit points

Thus the set of the limit points of poles of the sequence fpnðzÞg as n-N consists
of the poles of aðzÞ (the multiplicity of the poles z1;y; zn is less by 1), possibly the
points z ¼ 0 and N; and the set NF of the zeros of polynomials from the family

oðz; tÞ ¼
Xn
j¼1

CjDjðzÞtj; t ¼ ðt1;y; tnÞAF

(see Proposition 2.1).
The last set NF is called the set of additional limit points.
In the section we will study the geometry of this set. First we consider the case

when NF ¼ |; i.e. when there exists limn-N QnðzÞ:

Proof of Theorem 2.4. Let n ¼ 1; i.e. jz1j ¼ ? ¼ jzmj4jzmþ1jX?Xjzcj and s14s2:

Then oðz; tÞ ¼ const: Hence NF ¼ | and the sequence of the ðl� 1Þ-normalized
denominators QnðzÞ has the limit:

lim
n-N

QnðzÞ ¼ ðz � z1Þs1�1ðz � z2Þs2?ðz � zcÞsc :
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Conversely, suppose that QnðzÞ is normalized somehow and there exists
limn-N QnðzÞ: This hypothesis means that all polynomials from the family oðz; tÞ
have the same set of zeros for all tAF: But as we see in Proposition 8.1 the
polynomials oðz; tÞ have no common zeros. Hence oðz; tÞ ¼ const for all tAF: Let
n41: Consider the sequence ojðzÞ as in Proposition 8.1. By Proposition 6.1, since the
leading coefficient of ojðzÞ is r�jSjðtÞ; there exists j such that degojðzÞ ¼ n� 1: This

contradiction concludes the proof. &

Let us consider the next case n ¼ 2:

Proof of Theorem 2.5. Let n ¼ 2: If zANF; i.e.

C1D1ðzÞt1 þ C2D2ðzÞt2 ¼ 0;

then z lies on the Apollonius circle

z � z1

z � z2

���� ���� ¼ C1

C2

���� ����: ð9:1Þ

Now we determine when the converse inclusion is valid. We must consider the

three cases. If r ¼ 2; i.e. F ¼ T2; then it is obvious that any point of circle (9.1)
belongs to NF:
Let now r ¼ 1: Suppose that Y0; Y1 are linearly independent over Q and Y2 ¼

p0
q0
Y0 þ p1

q1
Y1; pj; qjAZ: Let us explicitly calculate the group F: The matrix A has now

the form

A ¼
q0 0 p0

0 q1 p1

 !
:

Since p1; q1 are coprime, there exist integers u1; v1 such that q1u1 þ p1v1 ¼ 1: Let d be
the least common multiple of the denominators q0; q1: Then the direct calculation
shows that

S ¼
�q0p1

d
q0q1

d

0B@
1CA and

�v1 u1

q1 p1

 ! �q0p1

d
q0q1

d

0B@
1CA ¼

q0

d

0

0@ 1A:

This means that s ¼ q0
d
and

T�1
2 ¼

�v1 u1

q1 p1

 !
:

Thus,

F ¼ fðe�
2pijv1

s tq1 ; e
2piju1

s tp1Þ j tAT; j ¼ 0; 1;y; s� 1g:
First let q1ap1: For definiteness we assume that n ¼ p1 � q140: If z0 lies on circle

(9.1), then

C1D1ðz0Þ þ C2D2ðz0Þt0 ¼ 0
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for some t0AT: We take any value of the root
ffiffiffiffi
t0n

p
as t1: Multiplying the above

equation by t
q1
1 ; we obtain

oðz0; t0Þ ¼ 0

for t0 ¼ ðtq1
1 ; t

p1
1 ÞAF: Hence z0ANF: Thus in this case NF coincides with the

Apollonius circle.

Let now q1 ¼ p1: From the form of the unimodular matrix T�1
2 it follows that

q1 ¼ p1 ¼ 1: Hence s ¼ q0 and we can choose v1 ¼ 0; u1 ¼ 1: In this case

F ¼ ftð1; e
2pij
s Þ j tAT; j ¼ 0; 1;y; s� 1g:

Since F cannot coincide with the diagonal of the torus T2; necessarily we have

s ¼ q0a1: Hence Y2 ¼ p0
q0
þY1; i.e. the points z1; z2 are vertices of a regular s-gon.

Thus,

oðz; tÞ ¼ t½C1D1ðzÞ þ C2e
2pij
s D2ðzÞ�; tAT; j ¼ 0; 1;y; s� 1;

and NF coincides with the set of zeros of the polynomials

ojðzÞ ¼ C1ðz � z2Þ þ C2e
2pij
s ðz � z1Þ; j ¼ 0; 1;y; s� 1;

i.e. NF consists of a finite number of points lying on curve (9.1). If all tAF are
regular, then the number of these points equals s: The singular point t exists iff

C1 þ C2e
2pij
s ¼ 0 for some (unique) value of j; j ¼ 0; 1;y; s� 1: In this case the

number of points in NF equals s� 1:
It remains to consider the case r ¼ 0: Then Y1 ¼ p1

q1
; Y2 ¼ p2

q2
; pj; qjAZ; and z1; z2

are also vertices of a regular s-gon, where s is the least common multiple of the
denominators q1 and q2: Let Y1 ¼ n1

s ; Y2 ¼ n2
s : Then

F ¼ fðe
2pin1 j

s ; e
2pin2 j

s Þ j j ¼ 0; 1;y; s� 1g:

Therefore NF consists of s or s� 1 (in the singular case) points. The theorem is
proved. &

Let now n42: First we describe general properties of NF that hold for any group
F: Denote by Nj ð1pjpnÞ the set of complex points z satisfying the inequalities

jCjDjðzÞjp
Xn
k¼1
kaj

jCkDkðzÞj; j ¼ 1;y; n:

Put N ¼
Tn

j¼1 Nj: We note that the poles z1;y; zn do not belong to N because

CjDjðzjÞtja0; DkðzjÞ ¼ 0; kaj; j; k ¼ 1;y; n:

Proposition 9.1. For n42 the set NF is a nonempty closed subset of N:

The proof is straightforward.
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In particular, for n ¼ 2 the set N is the Apollonius circle. For n42 the set N

already does not degenerate into a curve. The boundary of N is the curve L ¼Sn
j¼1 Lj ; where Lj is defined by the equation

jCjDjðzÞj ¼
Xn
k¼1
kaj

jCkDkðzÞj; j ¼ 1;y; n:

It is not difficult to verify the following properties of Lj :

(1) Li-Lj ¼ |; iaj;
(2) Lj is symmetric with respect to the circle jzj ¼ r;
(3) Lj is unbounded iff

jCjj ¼
Xn
k¼1
kaj

jCkj:

In order to prove Theorem 2.6, we need a criterion for the existence of a root of a
polynomial aðtÞ ¼ a0 þ a1t1 þ?þ antn belonging to the torus Tn: We will use the
following simple homotopic considerations.
Let aðt1;y; tnÞ be continuous and nonvanishing on the torus Tn function. Fix

values of t1;y; tn�1: t1 ¼ t01;y; tn�1 ¼ t0n�1: Define the partial Cauchy index with

respect to the variable tn:

kn ¼ 1

2p
½arg aðt01;y; t0n�1; eiYÞ�2pY¼0:

Here ½arg�2pY¼0 is the increment of arg when Y changes from Y ¼ 0 to 2p: Since the
torus Tn�1 is a compact connected set, the index kn does not depend on a way of
fixing of t1;y; tn�1: In particular, if aðt1;y; tnÞ is a polynomial, then

aðt01;y; t0n�1; tnÞ has the same numbers of zeros into the unit disk jtjo1 for any

way of fixing of t1;y; tn�1:

Lemma 9.1. A polynomial aðtÞ ¼ a0 þ a1t1 þ?þ antn; aja0 for j ¼ 1;y; n; has a

root belonging to the torus Tn if and only if the inequalities

jajjp
Xn

k¼0
kaj

jakj; j ¼ 0;y; n ð9:2Þ

are valid.

Proof. The proof of necessity is trivial. Let us prove sufficiency.
Obviously, for n ¼ 1 inequalities (9.2) provide the existence of a root of aðtÞ in Tn:

Let n41 and aj ¼ jajjeijj ; j ¼ 0; 1;y; n: First we suppose that for the coefficients of
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the polynomial aðtÞ the equality

jajj ¼
Xn

k¼0
kaj

jakj

holds for some j; 0pjpn: Put

t0j ¼ �e�iðjj�j0Þ; t0k ¼ e�iðjj�j0Þ; kaj:

Then aðt01;y; t0nÞ ¼ 0: Hence in this case there exists a root t0 ¼ ðt01;y; t0nÞ in Tn:
Suppose now that the strict inequalities

jajjo
Xn

k¼0
kaj

jakj; j ¼ 0; 1;y; n ð9:3Þ

are valid.
The existence of a root we prove by induction on nX2: Let n ¼ 2: At first we fix

t01 ¼ e�iðj1�j0Þ: Then aðt01; t2Þ has a unique root t02 ¼ �eij0
ja0jþja1j

a2
; and, by inequalities

(9.3), we have jt02j41:Hence aðt01; t2Þ has no roots inside the unit circle jt2j ¼ 1:Now

we fix the other value of t11 ¼ �e�iðj1�j0Þ: In this case aðt11; t2Þ has a unique root

t12 ¼ �eij0
ja0j�ja1j

a2
; and, in virtue of inequalities (9.3), we obtain jt12jo1: Therefore

aðt11; t2Þ has one root inside the circle jt2j ¼ 1: If we suppose that aðt1; t2Þa0 on the

torus T2; then aðt1; t2Þ has different numbers of roots inside jt2j ¼ 1 for different
ways of fixing of t1: But this is impossible and hence aðt1; t2Þ has a root belonging to
T2:
Suppose our statement holds if the number of variables of aðtÞ is n � 1: Prove its

validity for polynomials in n variables. At first we fix t1;y; tn as follows: t01 ¼
e�iðj1�j0Þ;y; t0n�1 ¼ e�iðjn�1�j0Þ: Then the polynomial

aðt01;y; t0n�1; tnÞ ¼ ðja0j þ?þ jan�1jÞeij0 þ antn

has a unique root

t0n ¼ �eij0
ja0j þ?þ jan�1j

an

;

lying, in virtue of the inequality janjoja0j þ?þ jan�1j; outside the disk jtnjp1: If
for the coefficients a0;y; an�1 the inequalities

jajjp
Xn�1
k¼0
kaj

jakj; j ¼ 0;y; n � 1; ð9:4Þ

are valid, then, by the induction hypothesis, there is a point ðt11;y; t1n�1ÞATn�1 such

that a0 þ a1t11 þ?þ an�1t1n�1 ¼ 0: Hence the polynomial

aðt11;y; t1n�1; tnÞ ¼ antn
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has the root t1n ¼ 0 lying inside jtnj ¼ 1: This is possible only if aðt1;y; tnÞ has a root
in Tn: Hence if conditions (9.4) are fulfilled, the statement of the lemma is proved.
Suppose now that these conditions are not fulfilled, i.e. there is some j; 0pjpn �

1; such that

jajj4
Xn�1
k¼0
kaj

jakj:

Fix now values of t1;y; tn�1 as follows: t1j ¼ �e�iðjj�j0Þ; t1k ¼ e�iðjk�j0Þ; k ¼
1;y; n � 1; kaj:
Then the polynomial

aðt11;y; t1n�1; tnÞ ¼ eij0

Xn�1
k¼0
kaj

jakj � jaj j

0B@
1CAþ antn

has a unique root t1n for which, in virtue of our supposition, holds

jt1nj ¼

jajj �
Pn�1
k¼0
kaj

jakj

janj
:

Taking into account the inequality

jajjo
Xn

k¼0
kaj

jakj

from the system of inequalities (9.2), we get jt1njo1: Again this is possible iff

aðt1;y; tnÞ has a root in Tn: The lemma is completely proved. &

Theorem 2.6 is a direct consequence of the lemma.

Proof of Theorem 2.6. It remains to prove only the inclusion NDNF: If z0AN; i.e.,

jCjDjðz0Þjp
Xn
k¼1
kaj

jCkDkðz0Þj; j ¼ 1;y; n;

then, by Lemma 9.1, the polynomial oðz0; tÞ has a root t0 ¼ ðt01;y; t0nÞATn ¼ F:
Hence z0ANF: &

Lemma 9.1 allows to find NF for one more case.

Theorem 9.1. Suppose Y0 ¼ 1;Y1;y;Yr ð1pronÞ are linearly independent over Q

and Yk ðr þ 1pkpnÞ are rational numbers. Since Yk is defined up to an integer

summand, we can uniquely represent it as follows:

Yk ¼ nk

s
; k ¼ r þ 1;y; n;
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where 0pnkps� 1: By Nn we denote the set of complex points satisfying the

inequalities:

jCjDjðzÞjp
Xr

k¼0
kaj

jCkDkðzÞj; j ¼ 0; 1;y; r:

Here for uniformity we put

C0D0ðzÞ ¼ jrj�n
Xn

k¼rþ1
CkDkðzÞzn

k; n ¼ 0; 1;y; s� 1:

Then

NF ¼
[s�1
n¼0

Nn:

Proof. The group F in this case can be easily found by definition:

F ¼fðe2pinY1 ;y; e2pinYnÞgnX0

¼fðt1;y; tr; x
nrþ1
n ;y; xnn

n Þ j ðt1;y; trÞATr; n ¼ 0; 1;y; s� 1g;

where xn ¼ e
2pin
s : Since ðxnrþ1

n ;y; xnn
n Þ ¼ r�nðzn

rþ1;y; zn
nÞ; we have

oðz; tÞ ¼
Xr

k¼1
CkDkðzÞtk þ r�n

Xn
k¼rþ1

CkDkðzÞzn
k;

ðt1;y; trÞATr; n ¼ 0; 1;y; s� 1:
As above it remains to apply Lemma 9.1. &

We conclude the section with the case of a regular arrangement of the poles
z1;y; zn:

Proof of Theorem 2.7. Suppose that NF consists of a finite number of points. Fix
any point ðt1;y; tnÞAF and consider the sequence of polynomials ojðzÞ; jX0; as in

Proposition 8.1. From the recurrence relation r jþ1ojþ1ðzÞ ¼ r jzojðzÞ � SjðtÞDðzÞ
we obtain

r jþkojþkðzÞ ¼ r jzkojðzÞ �
Xk�1
i¼0

zk�i�1SjþiðtÞDðzÞ: ð9:5Þ

Since NF is finite, in the sequence fojðzÞgNj¼0 there are polynomials that coincides
up to constant factor. Let ojþsðzÞ ¼ cojðzÞ: It follows from Eq. (9.5) that

r jðcrs � zsÞojðzÞ ¼
Xs�1
i¼0

zs�i�1SjþiðtÞDðzÞ:

Since ojðzÞ and DðzÞ are coprime, DðzÞ is a divisor of crs � zs: Hence jcj ¼ 1 and all

roots z1;y; zn of the polynomial DðzÞ lie in vertices of a regular s-gon.
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Conversely, suppose the poles z1;y; zn are vertices of a regular s-gon. Let us take
the pole z1 ¼ re2piY1 as the original vertex. Then the arguments of the vertices are

Y1;Y1 þ 1
s;y;Y1 þ s�1

s and

Yk ¼ Y1 þ
nk

s
; 2pkpnps; 1pnkps� 1:

As above the group F can be easily found by the definition. Let F1 be the closure of

the cyclic group generated by e2piY1 : It is clear that F1 is a finite cyclic group ifY1 is a

rational number, and F1 ¼ T if Y1 is an irrational one. Since e
2pink
s ¼ zk

z1
; we have

F ¼ fxz
�j
1 ðz j

1 ;y; z j
n Þ j xAF1; j ¼ 0; 1;y; s� 1; g

and oðz; tÞ ¼ xz
�j
1 ojðzÞ; where ojðzÞ ¼

Pn
k¼1 CkDkðzÞz j

k ; j ¼ 0;y; s� 1:HenceNF

is the union of the zeros of the polynomials ojðzÞ; j ¼ 0;y; s� 1; i.e. a finite set.

The sequence Lt now coincides with the sequence Lj consisting of the positive

integers n such that n 	 j ðmod sÞ: The polynomials onðzÞ can be defined for all nX0:

Let an ¼
Pn

k¼1 Ckzn
k be the (formal) leading coefficient of the polynomial onðzÞ:

Then the following recurrence formula of type (4.3):

onþ1ðzÞ ¼ zonðzÞ � anDðzÞ; nX0;

is evident. &

It is not difficult to show that if r ¼ 1; then the set NF consists of a finite number
of points (for the case when the connected component of the identity is a diagonal
subgroup of F) or a finite numbers of algebraic curves. However an explicit
description of NF for any group F is not yet obtained.
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[14] V.I. Buslaev, A.A. Gončar, S.P. Suetin, On convergence of subsequences of the mth row of the Padé
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(in Russian).

[32] V.V. Vavilov, G. Lopes, V.A. Prokhorov, On an inverse problem for rows of the Padé table, Mat. Sb.
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