Approximation
Theory

@ WWW MATHEMATICSWEB.ORG roommor

POWERED BY SCIENCE ‘dDIHEOT'

ACADEMIC
PRESS Journal of Approximation Theory 122 (2003) 160-207

http://www.el sevier.com/l ocate/jat

The uniform convergence of subsequences of the
last intermediate row of the Padé table™

Victor M. Adukov

Department of Differential Equations and Dynamical Systems, Southern Ural State University, Lenin
Avenue 76, 454080 Chelyabinsk, Russia

Received 29 April 2001; accepted in revised form 10 April 2003

Communicated by Guillermo Lopez Lagomasino

Abstract

In the work the uniform convergence of rows of the Padé approximants for a meromorphic
function a(z) is studied. The complete description of the asymptotic behavior of denominators
0,(z) of the Padé approximants is obtained for the (4 — 1)th row. Here A is the number of the
poles of a(z). The limits of all convergent subsequences of {Q,(z)} are explicitly computed.
These limits form a family of polynomials which is parametrized by a monothetic subgroup F
of the torus T". The group F is constructed via the arguments @y, ..., ®, of those poles of a(z)
of the maximal modulus that have the maximal multiplicity.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The convergence of row sequences of the Padé table for meromorphic functions is
a subject of numerous works (see, e.g., [11,12,14,19,20,22,25,29-32]). The first result
obtained by de Montessus de Ballore in 1902 [25]. In this work de Montessus showed
that the row sequence of the Padé approximants m,,(z) of type (n,1) for a
meromorphic function a(z) converges to a(z) as n— oo in a disk |z|<R with the
exception of neighborhoods of the poles of a(z). Here 4 is the number of the poles
(counting multiplicity) of a(z) in the disk. The key to the problem was the fact,
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discovered by Hadamard [20], that the zeros of the denominators Q,,(z) of =, ,(z)
tend to the poles of a(z).

Lin [22] and Sidi [29] obtained a sufficient condition for the convergence of some
intermediate rows of the Padé table. To describe their results, we introduce some
needed notation. Let a(z) be a function which is meromorphic in the disk Dg =

{zeC||z|<R} and analytic at the origin. Let zj,...,z, be its distinct poles of
multiplicities s1, ..., s/, respectively, and let 4 =s; + --- + 5, be the number of its
poles in the disk Dg. Suppose that

p=la| = =lzu>lzun[Z =z
The poles zy,...,z, of the maximal modulus are ordered in such a way that

spz ez If

/ /
m = E Sj m = E Sj s
J=1 J=pl

then, by de Montessus’s theorem, m,,,(z) converges to a(z), uniformly on any
compact subset of the set Dr\{z1, ...,z/} (D,\{zu+1, ..-r27}). If

/ /
Z si<m< Z i,
J=1

Jj=u+l1

then mth row of the Padé table is said to be an intermediate row.
In [22,29] it is shown that lim,,_, o, 7, (z) exists for a mth intermediate row if there
is a unique solution to the following integer programming problem:
n
maximize (sjo; — a}) over(ay, ...,0,) (1.1)
j=1
subject to Y1 0; = m — er;ﬂrl s; and 0< 0, <s;, 0; are integers. In particular, it is
easily seen that for m = 25:1 s; — 1 (for the last intermediate row) a unique solution
of problem (1.1) exists iff s; >s,. Hence if the function a(z) has a single pole of the
maximal multiplicity among the poles of the maximal modulus, then there exists
limn_, oo Tnj—1 (Z)

In the work of Liu and Saff [24] the convergence of intermediate rows of the Walsh
array of the best rational approximations to a meromorphic function was
investigated (in the special case when a(z) has poles at just two point at the
boundary see [28]). The authors obtained also a uniqueness criterion and explicit
formulas for a unique solution of problem (1.1). The convergence of intermediate
rows for a multipoint Padé approximations was studied in [23].

For intermediate rows not satisfying the uniqueness criterion (“‘bad” intermediate
rows, by terminology of Liu and Saff) Liu [23, Section 5] gave an example to explain
the complexity of convergence. He investigated an asymptotic behavior of poles of
my,1(z) for a function with exactly two different simple poles lying on the unite circle.
It turns out that the set of the limit points of the zeros of Q) (z) could make up an
arc of a circle in |z|<1.



162 V.M. Adukov | Journal of Approximation Theory 122 (2003) 160-207

In the general case, the complete description of the limit point set of the poles of
T, m as n— o0, does not exist for any row. However, there is an intermediate row for
which this description can be obtained. It turns out that for the last intermediate row
(m=21-—1) the complete theory of the uniform convergence of the sequence
Tys—1(z) can be constructed. This means that we can explicitly calculate the limits of
all convergent subsequences of the sequence of the denominators Q, ;1 (z) as n— 0.
Hence for this row we can explicitly describe the set of limit points of the poles of
Ty —1(z). In particular, we will show that the inequality s;>s, is the necessary
convergence condition for the last intermediate row. Moreover, the example of Liu
will be significantly generalized.

In the present work we will establish that the asymptotic behavior of the
denominators Q, ;—1(z) is defined by an arithmetic nature of these poles of a(z) that
have the maximal modulus and the maximal multiplicity. Our approach to the
problem can briefly be described as follows.

Let us represent the meromorphic function a(z) in the form:

a(z) = b(z) +r(z).

Here the function b(z) is analytic in |z|<R and r(z) is a strictly proper rational
function which is the sum of the principal parts of the Laurent series of a(z) in
neighborhoods of the poles of a(z).

In [18] the problem was formulated of how the passage from the analytic function
b(z) to the meromorphic function b(z) + r(z) influences the convergence of the Padé
approximants. In [18,27] the convergence of the diagonal Padé approximants was
studied for the case when b(z) is the Markov function for a measure with a compact
support on R. Essential in the considerations of those works was the fact that the
asymptotic behavior of denominators of the Padé approximants for 5(z) was well
studied and r(z) was considered as a kind of perturbation.

In contrast with [18,27] we will study the convergence of the row Padé
approximants of a(z) as the result of a small perturbation of the Padé approximants
of the rational function r(z) by b(z). To do this, we will study the asymptotic
behavior of the denominators of the Padé approximants for the rational function
r(z). Then considerations based on the stability allow to get the same asymptotic
behavior for the Padé approximants of a(z). Thus for the (1— I)th row the
convergence of the Padé approximants of a(z) is completely determined by the
rational part r(z) of the function a(z). This approach was earlier used for a proof of a
matrix analog of de Montessus’s theorem [9].

2. Statement of main results

Let a(z) be a function which is meromorphic in the disk Dg and analytic at the
origin. Let zj, ..., z, be its distinct poles of multiplicities sy, ..., s, respectively, and
let A =5, + - + s, be the number of its poles in the disk. In this article we will

P

consider the Padé approximants w,(z) = Q”—8 of type (n, A — 1) for a(z). In the sequel
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we will see that the asymptotic behavior of the denominators Q,(z) as n— oo is
defined by an arithmetic nature of these poles of the maximal modulus that have the
maximal multiplicity. Let us introduce some needed notation.

Suppose that

p=lal = =lzu>lzunl = =z
The poles zi, ...,z, of the maximal modulus are ordered in such a way that
s1=---=s,. Among the poles zj, ...,z, we select the poles zj, ..., z, (1<v<u</)
that have the maximal multiplicity:
SES] = =8>S =0 =Sy
The poles zy, ..., z, will be called dominant poles of a(z). Let
71 = pe®™® |z, = pe™Or,

Introduce the vector ¢ = (¥ ... *™®") belonging to the torus T'. The

asymptotic behavior of Q,(z) will be determined by the limiting behavior of
&", n— co. Hence we will need the closure [ of the semigroup {£"},. in T". This set
coincides with the closure of the cyclic group {&"},_, (see Theorem 5.1), ie. Fis a
monothetic subgroup of the torus T".

In the problem under consideration the group [ plays a significant role. The limits
of all convergent subsequences of {Q,(z)} form a family of polynomials which is
parametrized by F. For this reason we will call F by the parameter group.

Our first result is concerned with an explicit construction of F in terms of @y =
1,0y, ...,0,. We will use the following well-known fact: an arbitrary integer matrix
can be reduced to the diagonal form (the Smith form) by integer elementary
transformations. Denote the field of rational numbers by Q.

Theorem 2.1. Let r + 1 be the rank over Q) of the system of the real numbers ®y =
1,0,...,0,.

If r=v, then F = T".

Let 0<r<v. Put the poles zi,...,z, in such order that ®y=1,0;,...,0, is a
maximal linearly independent over Q) subsystem of the system @y, @y, ..., 0,, and

0= Z 9Ok, qyeQ, j=r+1,...,v.
k=0

Let oy be the least common multiple of the denominators of the rational fractions qy;

and oy = ogqr; for k =0, ...,r, j=r+1,...,v. We compose the integer matrix
oo cee 0 000, r+1 .. Oy
A ) i . )
0 o Oy Ol e Oy

and reduce it to the Smith form over the ring Z:

A =S|AS; "
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Here Sy, Sy are invertible over 7 integer matrices. Delete the first row and the first
r+ 1 columns in S», and denote the obtained matrix by S. Let us now reduce S to the
Smith form:

S = TIA()Tz_l.

Then the invariant factors of S are 1, ...,1, a0, where o is the greatest common divisor
of minors of order v — r of the matrix S.

Denote the (v —r +j)throw of Ty by Q;, j =0, ...,r. Then the group F consists of
the points © = (ty, ...,7,)€T" such that

T= f”Q"tlQ' 19

r

Here

(t1,...,t;) is an arbitrary point of the torus T', and we use the notation t2 =
(¢4, ..., 1%), where Q = (q1, ..., qy).

Now it is not difficult to prove that for any 7€ there exists the sequence A, =N

consisting of numbers ki, k», ..., k;j<kji1, such that
lim (eznik@)‘, o @R — o keA,.
k— o0

We denote by A, — 1 the sequence A, shifted by .

The following theorem is the main result of the work. In it we will describe the
asymptotic behavior of the denominators Q,(z) and will calculate the limit points of
the sequence {Q,(z)}.

Let A4; be the coefficient of (z — z;)”” in the Laurent series in a neighborhood of

the pole z = z; for the function a(z). Put
1

q = | .3','71 2 ’
(s; = Dlzj Di(z)4;
where
D(z) :
Dj(z) = - (2)=(z—z2)"(z—2z)", 1<I</
’ (z—-z)"
Denote

Si(t) = Z Ckz,{rk7 T=(11,...,7,)€F, jeZ.
k=1

The nonnegative integer 6 (1) (0_(t)) will be called the plus-defect (minus-defect)
of telF if 6,.(7) (0_(7)) is the least nonnegative integer such that Ss, ;)(z)#0
(S_s5_(x)=1(t)#0). It is easily seen that 0<é(7)<v —1, 1<5_(7)<v. If 7 is fixed,
then for brevity we will write d,, o_ instead of d.(t), 0_(t). A polynomial P(z) is
said to be d-normalized if the coefficient of z¢ in P(z) is equal to 1.
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Theorem 2.2. Let © be an arbitrary point of the group F and let A, be a sequence of
indices corresponding to t.

Then, for all n, neA; — A, sufficiently large the denominator Q,(z) can be
(A — 04 — 1)-normalized and for the sequence of the normalized polynomials Q,(z)
there exists

lim Q,(z) = W(z,1), neA,—1, teF.

n— oo

Here W(z,t) is a polynomial of degree A — 6, — 1 which has z=0 as a root of
multiplicity 0_. This polynomial is computed by the formula:

Wi(z,t) = S(il Doz, 1)z —z)" (2= 2)" (2= 2)™ (2 — 2,

A(z)

R
Z—2Zj

o(z,7) = Z CiAi(z)t;, A= Alz)=(z=1z1)...(z — zy).
J=1

The family W (z,t), t€F, exhausts all limit points of the suitable normalized

sequence {Q,(z)}.

From this theorem it follows

Proposition 2.1. For the denominators Q,(z) of the Padé approximants of type (n, ) —
1) we have as n— oo, ne A, — 4, tel:

(1) s; — 1 roots of On(z) tend to z;, for i =1, ..., v;

(2) s; roots of Q,(z) tend to z; for i=v+1,....¢;

(3) 0.(7) roots of Qy(z) tend to oo, and é_(t) roots tend to 0;

(4) the other v — 0, (1) — 0_(1) — 1 roots of Q,(z) tend to the finite nonzero roots of
(z,7) which are different from zy, ..., z,.

Hence the set of the limit points of poles of the sequence {n,(z)}, n— oo, consists
of the poles of a(z) (the multiplicity of the poles zi, ..., z, is less by 1), possibly the
points z = 0 and oo, and the set of the zeros of polynomials from the family w(z, 1),
te[F. The last set will be called the set of additional limit points and will be denoted
by JVF

The following theorem is also a direct consequence of the main result.

Theorem 2.3. Fix 1€l and let A, be a corresponding sequence of numbers. Let K, be
any compact set of the disk |z|<p such that all zeros of the polynomial W (z,t) from
Theorem 2.2 lie outside K.

Then

lim |[m,(z) —a(2)||cx,) =0, neA:— 2

n— oo
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Now we state some results on the geometry of the set A ¢. First we study the case
when AF = (. If a(z) has a single dominant pole (v = 1), then it is easily seen that
w(z,7) = const and 4F = (. This means that the whole sequence 7, ;_1(z) has limit.
We arrive at the result of Lin [22] and Sidi [29] mentioned in Introduction. It turns
out that the converse statement is also true. Moreover, a stronger result holds. The
polynomials w(z, ) have the same set of zeros for all teF iff w(z,7) = const. Hence
we obtain the following result.

Theorem 2.4. The sequence of normalized denominators Q,(z) has limit as n— oo if
and only if v = 1.

The next case is v = 2. The group [ is easily computed and we obtain

Theorem 2.5. Let v =2, i.e. a(z) has exactly two dominant poles zy,z,. If zi,z, are
vertices of a regular o-gon, then N consists of o or o — 1 points lying on the
Apollonius circle

<
G

Z— I

zZ— 1z
In the converse case the set N'g coincides with this circle (or this straight line if

[& = 1D.

If we put / = u=v =2, s =1, then we obtain the example of Liu [23, Section 5,
Proposition 1].

Now let v>2 and let A" (1<j<v) be the set of complex points z satisfying the
inequality

G [GA)], =1, ...
k=1

k#j

Put /" = (;_; 7. Itis not difficult to show that for v>2 the set /"¢ is a nonempty
closed subset of 4"

Theorem 2.6. If r = v, i.e. the numbers @y = 1,01, ...,0, are linearly independent
over Q, then

N =N

In the following case the set /"¢ consists of a finite number of points.

Theorem 2.7. The set A" is finite if and only if the dominant poles zi, ... z, are
vertices of a regular a-gon, o =v. If this condition is fulfilled, then N consists of the
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roots of the polynomials
@@ZE:QM@¢ j=0,1,...,0 — .
k=1

These polynomials can be obtained by the recurrence formula:

Wuy1(2) = zwy(2) — 0,A(z), n=0.
Here ay, is the formal leading coefficient of w,(z).

For other cases of explicit construction of the set A"F see Section 9.

The results on the geometry of AF can be used in numerical analyses for
localization of poles of meromorphic functions. This will be the subject of
forthcoming paper.

3. Method of essential polynomials and Padé approximants

Our approach to a convergence problem for a row sequence of Padé approximants
of meromorphic functions is based on a method of essential polynomials. Notions
of indices and essential polynomials were first introduced in [1] in connection with
an explicit construction of a Wiener—Hopf factorization for triangular 2 x 2
matrix functions (see also [2—4]). The algebraic results that derived by this method
are summarized in [7]; the analytic applications to the Wiener—Hopf factorization
of meromorphic matrix functions are given in [5,6,8]. Moreover, de Montessus’s
theorem for matrix Padé approximants was also proved on the basis of this
approach [9].

In this section we will reformulate the classical definition of the Padé
approximants in terms of essential polynomials. We begin with the definition that
naturally leads to the notions of the essential polynomials. Since we will consider the
row convergence, we can restrict ourselves to the case of the Padé approximant of
type (n,m) for n=m.

Definition 3.1. Let a(z) => ;%) @z’ be a (formal) power series. The Padé

approximant of type (n,m) and order k (n — m<k<n+m) for a(z) is a rational
function nff%(z) = P,gfm(z) / ,(1](,2,(2) such that the polynomials Pf,]f%(z) and Qﬁ,]f,zz(z)

satisfy the following conditions:

1. OM(z) £0, deg Q(z) <k —n+m,
2. deg Pion(z) <k,
3. a(z2)0)(2) = PE)(2) = o(zmm+), 20,
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If k = n + m, then for any polynomial Q"™ (z) of formal degree 2m Condition 3

is fulfilled automatically. Obviously, the classical definition of the Padé approximant
of type (n,m) corresponds to our definition for k =n. We note that any Padé
approximant of type (n,m) and order k <n is the classical Padé approximants of type
(n,m).

It is easy to verify that the vector consisting of the coefficients of the polynomial
Q,(,k,)n(z) belongs to the kernel of the Toeplitz matrix

Ajey ] aj < pemid

Aje+2 Aje+1 cee Upomy2
Tyt = . i X

Apym Apym—1 cee Aopn—k

forn —m<k<n+ m— 1. (We prefer to deal with Toeplitz matrices in place of often

used Hankel ones.) Since the numerator P,gf,z,(z) can be easily found by the

denominator Qﬁ,k,),, (z), we concentrate on a determination of the polynomial Q,(qk,zq(z)

Hence we must study the kernel structure of matrices from the family {7y}, |
(for detail we refer to the work [7]). By a;"". , we denote the sequence
{@y—m+1, @nms2, ---,@nym} generating this family. If we want to emphasize the

dependence of T on & |, we will use the notation Ty(a}"" ). By ker 4 we

denote the kernel of a matrix A and by [4], ([4])7) denote the jth row (the jth
column) of 4.

Since it is more convenient to deal not with the coefficients of polynomials but
directly with the polynomials, we pass from the spaces ker Ty (a!*" 1) to the spaces
N i(aytn. ) of generating polynomials. To do this, with the help of the series a(z) we

introduce on the space rational functions of the form R(z) = Z/]\; w 1727 the Stieltjes
functional ¢ by the formula

N
o{R(2)} =) a .
=M

Here we suppose that @; = 0 for i<0. It is easily seen that ¢{z"'R(z)} coincides with
the coefficient of z' in the Laurent series a(z)R(z).
By A (@™ ) (n—m+ 1<k<n+m) we denote the space of polynomials of

n—m+1
formal degree kK —n + m — 1 satisfying the following orthogonality conditions:
c{z'R(z)} =0, i=kk+1,...,n+m. (3.1)

For brevity, we will also use the notation .4";. Obviously, A" is the space of
generating polynomials of vectors in ker Tj. For convenience, we put .A4",_,, = 0 and
denote by A" 1mi1 the (2m + 1)-dimensional space of all polynomials of formal

degree 2m. Thus Q,S",L (z)eN k(@) ). By dj we denote the dimension of 4. Let

A =d —d_y, n—m+1<k<n+m+1. If aﬁfzﬂ is a nonzero sequence, then
N1 =0, Ay = 2. It follows from conditions (3.1) that A7, and z.47; are
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subspaces of A1 (n —m+ 1<k<n+ m). Moreover, it is easy to see that
Nz N =z N 1.
Therefore, by the Grassmann formula
dim[ ANy 4+ zA ] = 2dy — di—;1. (3.2)
Let /1 be the dimension of any complement ;. of the subspace A"y + zAf in
the whole space A", 1. Then hyyp = Agy1 — A, 1.e. Agy1 =Ag. Thus,
0=A i1 <A< <A <Apimg = 2.

It follows from this that there are two integers p;, 1, (n —m+ 1<y, <p, <n+m)
such that

Anfmel == A,ul =0,
A#1+1 = :Aﬂz =1,
A#2+1 = = An+m+1 == 2 (3.3)

If the second row is absent, we assume that u; = u,. It is easy to verify that u; + u, =
2n+ 1. Hence in our case u; <n<p,.

Definition 3.2. The integers u;, u, defined in Egs. (3.3) will be called the indices of
the sequence a,*7" .

We see from Egs. (3.3) that /. #0 for k = p; and k = p, only. Moreover, since
) <y, we have h, 1 = h,,11 = 1. Hence,

N1 = N + 2Ny
for k#y;, and
N pst = (N + 2N ) F A1, =12

i

Here 4,41 is an one-dimensional subspace of A", 1.
Now we can describe the kernel structure of the family {7y}, .. For ke[n —
m+ 1;u;] we have A" = 0. The first nonzero space is the one-dimensional space

N y+1- Let Ry(z) be its basis. Then for ke [u; + 1; ]
Ne=A{a(2)Ri(2)},

where ¢;(z) is an arbitrary polynomial of formal degree k — u; — 1. In particular,
N i1 = {q1(2)R1(2)}, where deg g;(z) <n — p;, and we obtain the parametrization
of the set of denominators for the classical Padé approximant of type (n,m).

Let Ry(z) be a basis of any complement #,,,; of the subspace A", + 24", =
{q1(z)R:(2)} in the whole space .47, .. Then

Nk ={q1(z)Ri(2) + q2(z) Ra(2) }

for ke[u, + I;n+m+ 1]. Here ¢;(z) is an arbitrary polynomial of formal degree
k—pw—1,i=1,2.
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Thus the polynomials R;(z), Ry(z) play an essential role in the description of the
spaces A'i. It is easily seen that if {¢x} are moments of a measure with respect to the
unit circle, then R;(z) for the sequence ¢! is the orthogonal polynomial of degree n
on the unit circle.

Definition 3.3. The polynomials R;(z), R»(z) will be called the essential polynomials
of the sequence a)""" ;.

Note that the first essential polynomial R;(z) is unique up to multiplication by a
constant, while there is sufficient degree of freedom in a choice of the second
essential polynomial R;(z).

In what follows we must be able to verify that the given integers u;,u, (n —
m<py <p<n+m, u; + p, =2n+ 1) are indices and that the given polynomials
Ri(z)e Ny 41, Ro(z) €Ny 41 are essential polynomials of the sequence aﬁfﬁﬂ.

It turns out that in order to verify essentialness we must test the inequality

00 = 0{z " Ry, —ntmR1(2) — 27" Ry, —nsmR2(2) } #0

(see [6,7] at once for the matrix case). Here R; ., is the formal leading coefficient
of R;(z). The number o will be called the fest number for the given integers u;, u,
and polynomials R, (z), Ra(z).

Now we find when the indices of a sequence aﬁfﬂ 4y are stable under small
perturbations. It is easily seen that if k<<y,, then T} is left invertible and if k> u,,
then T} is right invertible. Since the set of one-sided invertible operators is open, the
indices fij, fi; of a perturbation sequence satisfy the inequality

WSS IS .
Hence, if u, — pu; <1, ie.,
py=n, pp=n+l,
then the indices p,, u, are stable under small perturbations. It can be shown that this

condition is also necessary for the stability of the indices. We note that if the
Hadamard determinant

An+1,l‘)1 == det ||al'7j||i‘:/1+l ..... n+m
Jj=0,1,....m—1
is nonvanishing, then the indices are stable.

Return to the Padé approximants. After we study the kernel structure of the

matrices Ty (). ), the following definition will be natural.

Definition 3.4. The Padé approximant n,(ff,;) (z) of type (n,m) and minimal order

k = u, will be called the Padé approximant 7, ,(z) of type (n,m).

Summing the above considerations, we come to the following result.
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Theorem 3.1. The Padé approximant m,,,(z) = SM_((;)) of type (n,m) always exists and

has the minimal order. The numerator and the denominator of m,n,(z) are uniquely
determined up to multiplication by a constant, and Qp,,(z) is the first essential
polynomials Ry(z) of the sequence d)" . Moreover, Ty y(z) is the classical Padé
approximant and also it coincides with the Padé—Baker approximant if the last exists.

The Padeé—Baker approximant exists if and only if R;(0)#0. If R;(0) = 0, then the

index of defect wy,, coincides with the multiplicity z =0 as a root of R;(z).

It is only required to prove the statements on the Padé—Baker approximant. But
the proofis straightforward and therefore is omitted. Moreover, these statements are
not used in the following.

Thus we clarify the place of the index u; and the first essential polynomial R;(z) of
the sequence &, | in the theory of the Padé approximants. As we will see in Section
8, in our approach the second essential polynomial R,(z) also plays an important
role. For completeness we formulate yet another result that make clear the place of

R;(z). This result is also not used in the given work.

Theorem 3.2. Suppose the Hadamard determinant

is nonvanishing.
Then the sequences d,n_, and a, | associated with the Padé approximants of
type (n — 1,m+ 1) and (n,m), respectively, have the stable indices.

Moreover, the first essential polynomial R\"™ (z) of the sequence aytm ., can be
taken as the second essential polynomial R(znfl’m“)(z) of the sequence a*" .

n+m

Conversely, for the sequence a, " | there exists unique, up to a constant factor, the

second essential polynomial Rgn_l"mﬂ)(z) such that its degree is less than or equals m.

n+m

This polynomial can be taken as the first essential polynomial R(ln"m) (z) of ayT ).

In conclusion of the section we note that the determination of indices and essential
polynomials of a sequence is equivalent to solving the problem of the Wiener—Hopf
factorization for a triangular 2 x 2 matrix function (see [1,7]). Hence the Padé
approximation problem is also equivalent to this factorization problem.

4. Explicit construction of denominators of Padé approximants for rational functions

Throughout what follows, we will consider the (1 — 1)th row of the Padé table and
now we will omit the subscript m = 4 — 1.

As we will show in Section 8, the study of a convergence of Q,(z) for a
meromorphic function a(z) is reduced to the same problem for the rational part r(z)
of a(z). In this section we find the denominators Q,(z) for r(z). By result of Section 3,
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n+m

n—m+1 for

we have to study the indices and essential polynomials of the sequence r
m=21—1.

First we describe in what terms we will solve this problem. Let r(z) be a strictly
proper rational function which is analytic at the origin. Let us represent it as the

fraction of coprime polynomials N(z) and D(z):

where D(z) = (z—z))" - (z—z)" =" +dj_ 12"+ - +dy and degN(z)</.
Since the polynomials N(z) and D(z) are coprime, there exist polynomials Uy(z),
Vo(z) such that

Us(2)D(z) + Vo(z)N(z) = 1. (4.1)

This equation is called the Bezout equation and its solution (Uy(z), Vo(z)) can be

found by the Euclidean algorithm. Moreover, it is well known that we can choose

Us(z), Vo(z) in such a way that deg V(z) <A. In this case the solution (Uy(z), Vy(z))

is unique and is called the minimal solution of the Bezout equation. (The terminology

is borrowed from system theory, where the matrix Bezout equation is widely used.)
Now let us consider the equation

Ur(z2)D(z) + Vi(2)N(z) = 2, k=0. (4.2)

This equation will be called the Bezout equation of order k. A solution of Eq. (4.2)
such that deg Vi (z) <A is said to be minimal.

Proposition 4.1. For all k=0 Eq. (4.2) has a unique minimal solution that can be found
by the recurrence formula
Vie1(2) = 2Vi(z) — o D(z), Uky1(2z) = zUr(z) + i N(z), k=0. (4.3)

Here vy is the coefficient of 2/~ in Vi (z), i.e. the formal leading coefficient of Vi (z).
Moreover, for k=2 — 1 degree of the polynomial Uy(z) is k — A and the leading
coefficient of this polynomial equals 1.

Proof. Let Ui(z), Vi(z) be the polynomials determined by Eq. (4.3) and the initial
minimal solution (Uy(z), V(z)). Obviously, deg Vi (z) <A — 1 and (Ui(z), Vi(z)) is a
solution of Eq. (4.2). Hence a minimal solution exists.

Assume now that there exists another minimal solution (Ui (2), Vi(z)). Then
(Uk(2) = Uk(2))D(2) = (Vi(2) = Vi(2))N(2).

Denote W(z) = [Vi(z) — Vi(2)]D™"(z). Hence,
Ui(2) - Ou(z) = WEONG). Pa(z) - Velz) = WD),

Multiplying these equations by Vo(2) and Uy (z), respectively, and summing, we obtain
W(z) = [Uk(z) = Uk(2)]Vo(2) + [Vi(2) = Vi(2)]Uo(2),

i.e. W(z) is a polynomial. But since deg[V(z) — Vi(z)] <deg D(z) = J, the equality
Vi(z) — Vi(z) = W(z)D(z) is possible iff W (z) =0. Hence Vi (z) = Vi(z), Ui(z) =
Uk(Z).
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It remains to prove the last statement of the proposition. Let k>21 — 1. Since
deg Vi (z)N(z) <24 — 2, then deg Uy (z)D(z) = k. Hence deg Uy (z) = k — A, and the
leading coefficient of Ui (z) is 1. This completes the proof. [

Now we can obtain the indices and essential polynomials of the sequence erj:jré =
{ru—i+2, Tu—it3y -, Fnrs—1 ; consisting of the Taylor coefficients of a rational function
r(z). This sequence is required for a determination of the denominators Q,(z) of the
Padé approximant of type (n,4 — 1) for r(z).

Theorem 4.1. For n=/ the sequence eriIé has the stable indices n,n+ 1 and the

essential polynomials Ry (z) = V,.;(z), Ra(z) = D(z). Moreover, the test number of
Ri(z2), Ry(z) is a9 = —1.

Proof. First we verify that

Vi (2) €N s (r:’:ﬁ;é), D(z)e Q/Vn+2(r2j_;é).

From the Bezout equation (4.2) we have
HzZ)Viia(2) + Uppi(2) = 277D (2) = ("), z—-0. (4.4)

Since (Uy+,(z), Vuts(z)) is the minimal solution, from Proposition 4.1 we get

deg Vn+/1(Z) <A-—1, deg UiH-i(Z) =n.

Hence V,,.;(z) is the denominator of the classical Padé approximant n,(z) of type
(n, 2 — 1) for r(z). Thus V() € N it (r550).
Let us prove the second inclusion. Polynomials in A", (r

degree 1. Degree of D(z) is also A. It follows from the equality
r(z)D(z) = N(z)

+A—1

1 - P
i >) have formal

that the coefficients of z*,z**! ... in the power series r(z)D(z) are equal to zero
because deg N(z) <A — 1. This means that
c{z'D(2)} =0, i=iA+1,... (4.5)

For a polynomial R(z) in A" n+2(”,'§fﬁé) the following orthogonality conditions

O'{ZiiR(Z)}:Oa i:”l+2,n+37--~7n+;“_1'

must be fulfilled. Therefore for n> A the polynomial D(z) really belongs to the space
A/n+2(r2fj;;) We note that if 2 =2, i.e. if ”'*! = {r,,r,,1}, then the orthogonality
conditions are absent, and the space A",;2(r"*!) coincides with the space of all
polynomials of formal degree 2 (see Section 3).

Now we put y; =n, i, =n+ 1, Ri(z) = Vu1,(2), Ra(z) = D(z) and calculate the
test number oy. In our case

oo = O—{Zin Vn+/1(z)} - Un+/lo—{zinilD(Z)}a
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where v,4, is the (formal) leading coefficient of V. ,(z). For n=/, by virtue of
Eq. (4.5), 6{z7""'D(z)} = 0. The number a{z "V, ,(z)} is the coefficient of z” in the
power series r(z) V., (z). From (4.4) we see that this coefficient coincides with the
leading coefficient of U, ,(z) with the opposite sign. Hence oy = —1. Then n,n + 1
are indices and V;,(z), D(z) are the essential polynomials of the sequence
nie O

Thus we obtain the sequence of denominators Q,(z) = V,;,(z). Now we find an
explicit formula for Vi (z) in terms of vy.

Theorem 4.2. The polynomials Vi (z) satisfy the following linear difference equation

Vk_H(Z) +d;_4 Vk+,1_1(2) + -+ dp Vk(Z) =0, k=0, (46)
where D(z) = z* 4+ d;_12*~" + -+ + dy. Moreover,
Z Z diinvksiz",  k=0. (4.7)

Proof. From the recurrence formula
Viee1(2) = zVi(z) — v D(z), k=0,

it follows that
Vivi(z) =2 Vk Z Vkyioj—1Z D (), i=l.

Multiplying this equation by d; and summing by 7 from 0 to 4, we get

A il
Z diViei(z) = D(2) | Vi(2) — Z Z diviyi—j12’
i=0 i=1 j=0

Suppose that the polynomial in the square brackets is nonzero. Then degree of the
left-hand side of the above equality is less than or equals A — 1, while the right-hand
side has degree >/. Since this is impossible, we obtain

A
Z dinJrl'(Z) =0
i=0

and

i—1
dlUkJrl —j— IZ (48)
i=1 j=0

After the inversion of the order of summation and change of the index of summation
in the last equation, we arrive at formula (4.7). [
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To study an asymptotic behavior of V,,;,(z) we must investigate a behavior of the
leading coefficients v as k— co. Comparison of the coefficients of z*~! in Eq. (4.6)
yields

Ukis + dp1Vkp1 + - +dovg =0, k=0, (4.9)

Thus the sequence of the leading coefficients vy of the polynomials Vi (z) is also a
solution of a linear difference equation. By the theorem on the structure of the
general solution of a linear difference equation with constant coefficients (see, e.g.,
[16]), we obtain

ve = p1(k)ZK + -+ plk)E, k=0 (4.10)
Here zi, ...,z, are the distinct zeros of D(z) = (z — z;)" ---(z — z,)", and p;(k) =
Cj(-) + lek + o+ C]”-v’_lk‘yf'_1 is a polynomial in k of formal degree s; — 1.
It remains to determine the polynomials p;(k) via the initial polynomial Vy(z).
First we will find initial value vy, vy, ...,v;_1 for Eq. (4.9) via the coefficients of the
polynomial Vy(z). Let Vo(z) = apz*"' + a;z*"2 + --- + a;_1. On the other hand, by
Theorem 4.2,
Vo(z) = vozt !+ (v + d;,,luo)zi# + o+ (v +div,a + - + divy).

Equate the coefficients of the same degrees of z. This yields the system of equations
from which we obtain

Do oo

S R Rl R (4.11)

U)—1 00)—1

where
1 0 0
di_; 1 0
T= )

d d ... 1

To find the coefficients of the polynomials p;(z) by the initial conditions it is
necessary to solve the system

P1(0) +p2(0) + --- + pr(0) = vo
Dz +pa(D)za + - +p/(D)zr =0y

pA=Dz A= DA e p (A= Dz =0, (4.12)

The matrix of this system is the column generalized Vandermonde matrix W,
determined by the polynomial D(z) (see, e.g., [15]). The structure of W, can be

described as follows. Let us introduce the block column [W,]’ corresponding to the
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zero z; of the polynomial D(z). This column is the 1 x s; matrix

1 0 0
Zj Zj Zj
wi=| g 21
-1 i1 =1 i1
z (A =1)z (A—=1)"z
Then
W= ([WC]I [W0]2 [WC]/)'

It is known that W is invertible [15].
In an analogous manner we define the row generalized Vandermonde matrix W;:

uan
W = )
uav
where
(i—l)‘vf_lz;_l oo 297122z 0
W = (A=Dzt .22z 0
Z])-'_l zjg z; 1

Now if we denote by p; the column consisting of the coefficients of the polynomial
p;(k), then the solution of system (4.12) is

Uo
P1 v
Dl =wt| (4.13)
pr

U1

Thus we obtain the polynomial p;(k) via Vy(z). Hence we have explicitly
constructed Vi(z) via Vy(z).
As we will see in Section 6, the asymptotic behavior of vy is determined by the

leading coefficients C;f_l of the polynomials p;(k) for j =1, ...,v. For brevity, we
will write C; instead of Cj’*l. Let us calculate C; and prove the important inequalities

Ci#0forallj=1,...,/. To do this, at first we introduce the operator J on the set of
polynomials X (z) = xo + x1z + -+ + x,,z" by the formula

0X(z) = zX'(2).
It is easily seen that 9 possesses all properties of the operator of differentiation and

akX(z) =x1z+ 222 4+ - +1Fx,2", k>0.
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Moreover, the polynomials ¥ X (z) can be used for the definition of multiplicity of
a nonzero root of X(z) instead of the derivatives X*(z).

Lemma 4.1. Let zg#0. Then z = zy is a root of X (z) of multiplicity r if and only if
X(z0) =0X(z0) = - =9 ' X(29) =0, 0" X(z0)#0.

The proof'is trivial because the polynomials 9 X (z) are linearly expressed in terms
of zX'(2), ..., 2x X" (z):

k
IX(z) =) oz’ X(2),
i=1
where oy = 1, and conversely

k
X0 () =253 pro'X(z).
i=1

Theorem 4.3. Let A; be the coefficient of (z —z¢) ¥ in the Laurent series in a
neighborhood of the pole z = z; for the function a(z).
Then
1

G = L (4.14)

where D;(z) = D) 1<j</.

(z=z)7

Proof. It follows from (4.11), (4.13) that

%o J4!

o

AR (4.15)
0l)—1 pr

Multiply this equation by the row generalized Vandermonde matrix W;. Since

i) oA 7 (Zj)
o .
Wr i . = ’
[ L : 8 V() (Zj)
%1 Vo(z))

(4.16)
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we obtain
Y o(21) D1
: = W, TW,
7 0(z/) Pr

Here 77y(z;) is the vector in the right-hand side of Eq. (4.16). From this formula we
get

P1
Vo(zj) = [WrTWC]M C ], (4.17)

Dr

where [W:TW.]y is the Njth row of W:TW. and N; = s1 + -+ + ;.
Let us find the row

W TWy, = Wiy TWe = (27" .. 21 DTW..
Denote
(Z;fil . N 1)T:(h1 hy ... /’l;,),

J

where /i, = Zﬁ:k dnzj’-”k . Let M]’ (z) be the product of this row multiplied by the
column

0
z
2172
(2 —1)z!
Then
A .
Mi(z) = Ik — 1)
k=2

If we substitute 4, in the above formula and invert the order of summation, we
obtain

n

Mi(z) = ; d, ]; (k— 1)1+ = ; d, o' Z Zyk

k=2
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~n—1 n—1
Since Yy, z/FF =

= z———, we have
“TE

[t

J % =
:aZi@(m@—mz—%_gw@»_m%_%O]
ai:izj+@} :31'M |

-z 7

179

m@:&

Z—Zj

The polynomial == D) has the roots z =z (k#j,1<k</) of multiplicity sx and
z =z of mult1p11c1ty s, — 1. Hence, by Lemma 4.1, we get

M]?(Zk)zo, k#j, 1<k<t, i=1,2,...,8.— 1
and

si—1 i — D(Z)
M) =0t =2

Let us find the last derivative. Since
D(z)

si—1
—z) D
el O}

by the Leibniz rule, we have

(ﬁ)(sﬂ):%‘z‘ (sj—l

k=0
Therefore
D(z) (5=1)
=) —_NID.
(72) R
Thus
M) (z) = (s — 1)1z} Di(z).

It is not difficult to verify that the formulas for M!(z) hold also for i =0



180 V.M. Adukov | Journal of Approximation Theory 122 (2003) 160-207

The result is
W TWey, =0 ... 0 (s—1z"'Diz) 0 ... 0),
where nonvanishing element has the number N;. From Eq. (4.17) we obtain
Volz) = (55— DV ' Di(z)C, j=1,...2.
It follows from the Bezout equation that

Vo(zj) = ﬁz])

Hence

1
C = — =1t
(s; = Dlz/' Dj(z)N(z)

Let us decompose the strictly proper rational function r(z) = % into the sum of

partial rational fractions, and let A, be the coefficient of (z—z) ¥ in this

decomposition. Then N(z;) = 4;D;(z;) and we arrive at the final result
1
q: 51 > 5 jzl,...,/.
(s = DIz D;(z;)4;

The theorem is proved. [

As an evident consequence of this theorem we note that all coefficients C; are
nonzero.

5. Explicit construction of parameter group

In this section we prove Theorem 2.1 on the monothetic subgroup F of the torus
.

In order to obtain the asymptotic of the minimal solution Vj(z) as k— co, we must
study the asymptotic of the solution v; of linear difference equation (4.9). This
solution is of the form

vk = pr1(k)ZK + - pr(k)zE

and its asymptotic will be defined by the limiting behavior of &, k— 0. Here
zp = pe?™O1z, = pe*™© and ¢ = (201 ... ") eT". Hence we need the
closure F of the cyclic group {ék tiez- Fis a monothetic subgroup of the torus T".

We will use the standard group-theoretic technique that is applied for a proof of
the Kronecker theorem on Diophantine approximations (see, e.g., [13,26]).

Proof of Theorem 2.1. The group T (the unit circle in complex plane C) is
identified with R/Z. Let us introduce the subgroup G of the group R" generated by
the point ® = (@, ...,0®,)eR" and the vectors ey, ...,e, forming the standard
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basis of R":
G ={miei + - +me, +mO}, . o
={(m +mOy,...,m, + m@)‘.)}(ml_me‘_’m)ezm.
Then the group G/Z" is isomorphic to the cyclic group {n®}, , generated by ©.

Now the group F may be identified with the group (G/Z") = G/Z". Here G is the
closure of the group G in R". It is well known (see, e.g., [26, Proposition 40]) that
G = (G)*, where G' is the annihilator of G in R’, i.e. a subgroup of the dual
group R’ consisting of characters y € R” such that 72(g) =0forallg = (g1,...,9,)€G.
Recall that we identify T with R/Z and therefore the identity element of T is the
coset of 0 in R/Z. Moreover, the dual group R" is identified in a natural way with R".
Thus,

Gt = {(xl, e X)) ERY

v

XjgieZ, ge G}.

Jj=1

From the definition of G it is easily seen that G+ is a subgroup of Z" and
Z h/Q/EZ}.
j=1

Now we construct a basis of G*. Denote ®y = 1 and introduce the subgroup L of
Zv+l:

Gl = {(hl,...,h‘,)eZ"

L= {(ho, o h) ezt

=0

Then G* = pr L, where pr(ho, ..., h,) = (hi, ..., h,).

Put the poles zj,...,z, in such order that ®) =1,0;,...,0, (0<r<v) is a
maximal linearly independent over Q@ subsystem of the system ®g,®,,...,0,. If
r = v, then, obviously, G+ = 0. Hence G = (G1)* = R' and F = T". Let r<v and

@jzzqkj@k, qkie@,j:r+1,...,v.

k=0
Taking into account the linear independence over Q of ®¢, @4, ..., ®,, we see that in
order to find L it is necessary to obtain integer solutions of the system
y
hi+ > qihi=0, j=0,1,..,r (5.1)
k=r+1

Let o; be the least common multiple of the denominators of the rational fractions
Gjr+1s oo @iy and o = oigp for j=0,...,r, k =r+1,...,v. Then system (5.1) can
be rewritten in the integer form

v
acjjhj + Z O(jkhk =0, j=0,1,...,r (5.2)
k=r+1
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Denote by 4 the integer matrix

oo cee 0 000,r+1 oo Ooy

0 v O Obepgl . Oy

of this system. Obviously, rank 4 = r + 1. To solve system (5.2) we reduce A4 to the
Smith form over the ring Z:

A = S|AS; !,

where S;, S, are invertible over Z integer matrices and
w - 0 0 - 0

A=1: -0 :

0 - o 0 - 0

We note that the integers o, ..., &, are nonzero. Hence for a solution # = (ho, ..., h,)'
of system (5.2) we have (S,'4), = --- = (Sy'%), = 0. In addition, the elements of
(S5'h),, = -+ = (Sy'h), of the column S5 '/ are integers. Thus the solution / of
system (5.2) has the form

0
=S5, 0 ,
ki
kvz,,‘
where ky, ..., k,_, are arbitrary integers, and any element /i of the group L can be

represented in the form

h=k[S) " + - 4k, [S2)

Recall that [4]” is the jth column of a matrix 4. Since the columns of the matrix S,

are linearly independent over Z, [S»]"*2, ..., [S2]""" is a basis of the group L. Hence to
construct the group G = pr L we need the last v rows and the last v — r columns of
the matrix S,. Let S be the integer v x (v — r) matrix obtained from S, by deleting of
the first row and the first r 4+ 1 columns. Then any element 4 = pr /i of the group G+
can be written as follows:

h=0k[S]'+ - +k_[S]"",
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ie. {[S]',...,[S]"""} is a generating system of the group G*. Suppose that n;[S]' +
-« +ny_,[S]"" =0, where nje Z. Then

m
0 ) ,
| = m[S) P+ 4 [S)) el
0
ie.m=0.Thus m = --- =n,_, =0, and [S]', ..., [S]" is a basis of G*.

However in order to obtain G we need a special basis of G1. To construct it, we
reduce the integer matrix S of rank v — r to the Smith form:

S = TleTz_l’ (53)

where T, T, are invertible over Z integer matrices and A is the v x (v — r) matrix of
the form

O'l e 0
0 Oy
Ay =
0
0 0
Here o4, ...,0,_, are positive integers such that ¢; divides o;,;. These integers are
called the invariant factors of the matrix S.
Since the integer v x v matrix T} is invertible, the columns [T1]", ..., [T}]" form a
basis of the group Z" (and the vector space R"). Moreover, o [Tl}l, vy oy [Th] s a

basis of the subgroup G*. Indeed, from Eq. (5.3) we have
S= ([T ... oo [T )Ty

Hence the columns of S are linear combinations of the columns
ol[Tl]l, ey 0y [T1]""". Thus al[Tl]l, wyov[T1]""" also is a generating system of
G*. BEvidently, these columns are linearly independent over Z, and
a[T1], ..., 00 [T1]"" is the required basis of G*.

Now we can pass to a description of the subgroup G = (G1)*. Since [T
d;, where d; is the Kronecker delta, the rows [T7'],, ..., [T7!]
form a basis of the vector space R’ which is dual with the basis [T1]', ..., [T}]".

Let N be the discrete group generated by the vectors 7], ..., 7={T7]

i[T]j =
, of the matrix 77!
—

Ny

[ _
N = {8 e 2 ,
g Gy—r (n1,....ny_)€2""
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[T,

v

M the r-dimensional space which is spanned by the rows [T} !]

M = {xl[Tfl]‘v_,~+1 + o +xi‘[Tfl]"}(xl,....x,.)e[R{"

v—r+1s °

By virtue of invertibility of T}, we have N M = 0. Let us form the group N+M and
prove that

G=N+M. (5.4)
Recall

G=(GH* = {Xe[Rz"

Z thjEZ, hEGL},

=1
where
hy
X =(x,...,x,)eR", h=]| : |eG*.
hy
Therefore if X € G, then, taking into account that al[Tl}l, ...,0v_[T1]""" belong to

G+, we have
ni ny_y
XTI = <_7 ey T Ly ey Xy ]

g1 Oy_y
where ny, ...,n,_, are integers and o, _,,1, ..., o, are real numbers. This means that
X = nl,...,nvr,av,+1,...,oc\,>T11, (5.5)
01 Oy—r
ie. XeN+M.

Conversely, if X has form (5.5), then
q,X[Tl]j =meZ, j=1,...,v—r.

Since {g;[7T1]/};_] is a basis of G, XheZ for an arbitrary he G*, that is XeG.
Formula (5.4) is proved.

Let No=NnZ" and My = MnZ". These sets are subgroups of Z’. Since the
columns [T} 1], ..., [T}!], belong to No+ M, and generate Z*, we have Z* = N+ M.
Then G/Z' is identified with the group (N/Ny) x (M /My). Thus for F = G/Z" we
have

F=K x F.
Here K = N/Nj is a finite group that is the direct product of v — r cyclic groups
i<y, ..., K, of orders oy, ..., o,_,, respectively, and Fy = M /M, is isomorphic to the
torus T (see, e.g., [13, Chapter VII, Section 1, Item 5]).
Let us now find the invariant factors oy, ...,g,_,. It is known that a compact

abelian group H is monothetic iff its dual group H is topologically isomorphic to a
subgroup of the group T, (T, is the group T endowed with the discrete topology)
(see [26, Theorem 20]). Let Hy be a closed subgroup of H. Since (H/Hp) is
isomorphic to the subgroup H;" of the group H ([26, Theorem 20]), we obtain that if
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H is monothetic, then the factor group H/H, is also monothetic. Hence K=~F/F is
monothetic. But this means that the finite group K is cyclic.
Thus K is a cyclic group that is the direct product of v — r cyclic groups of orders
o1, ...,0,_, Where o; divides a;1:
K=K x - xK,_.
Let us prove that this is possible only if

O] = " =0y—-1= 17 Oy—y =0,

where o is the order of the group K. Suppose that there exists o;# 1 for some index i,
1<i<v—r—1.Let g; = p{" ---p;" be the canonical decomposition of the integer g;
into the product of prime numbers. Here there is j, 1 <j </, such that m; #0. Since o;
divides o;1;, we have a;.| :pll‘1 ---pf’, where m <k, ...,my<k;. Then in the
subgroup ; (K;.1), by the first Silow’s theorem (see, e.g., [21, Chapter 13, Section
54]), there exists a cyclic subgroup of order p]’-”/ (pjk/ ). Hence in the group K there
exists a subgroup which is the direct product of these cyclic groups. Since K is a finite
cyclic group, this subgroup is a decomposable cyclic group of order p;"’ % But this is
impossible (see [21, Chapter V, Section 17]). Thus K is isomorphic to the cyclic group
Z, of order o.

It remains to find o. As is well known, the invariant factors of a matrix S are
calculated via the greatest common divisors J; of minors of order k of this matrix:
O = g10;2---0% (see [33, Chapter 12, Section 85]). Hence ¢ is the greatest common
divisors of minors of order v — r for the matrix S.

We note that although the matrix S (i.e. a basis of G*) is not uniquely found, the
integer ¢ does not depend on a choice of S. Thus r and ¢ are invariants of the given
system @y, ..., 0,. It is easily seen that for r = 0 (i.e. for the case when all ®; are
rational numbers) ¢ coincides with the least common multiple of the denominators
of @,

Let Q; be the (v — r +j)th row of the matrix 77!, j =0, ...,r. For a vector Q =
(q1, ---,4v) we denote

eZniQ _ (‘927zl'q17 . e2niq\‘).

Now from formula (5.4) we see that a vector (¢, ..., ,) belongs to G iff it can be
represented as follows:

_ _ n
(@1, -5 0,) =m[T) 1]1 + Ay [T l}vfr—l +EQO +x101 + - + X0,

where 7y, ...,n,,n are arbitrary integers and xi, ..., x, are arbitrary real numbers.
Hence a point 7 = (ty, ...,7,) €T’ belongs to F iff 7 is represented in the form
2minQq . .
I—¢ v emelQl -~~€2m'x"Q".

Denote ¢, = eznTi", n=0,...,6 —1, and put t; = ™%, k=1, ...,r. Then the map
(nytyy .y ty)>T = CnQ"tlQ‘ ---19r is an isomorphism of the groups Z, x T" and F. The
theorem is proved. [
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It is not difficult to write a program to compute F for input 4.
Let us now show that the closure of the semigroup {&},_, also coincides with [.

Theorem 5.1. For any te[F there exists the sequence A, of indices ki, ks, ..., kj<kj.1,
such that
lim (201 2O — 1 keA..

k—

Proof. Let t = (™1 ... ™% )eF. Then (¢,,...,0,)€G, ie. for any ¢>0 there
exist integers my, ..., m,, m such that

Im®; — ¢, + m;|<e

forall j =1, ...,v. Let us show that we can always choose m greater than any given
N eN. Indeed, for given ¢ first we determine iy, ..., ni,, i such that

~ ~ & .
|m®j—qoj+mj\<§, j=1,...,v.

For = N, there is nothing to prove. Let rii< N. Since (0, ..., 0) € G, we can choose
integers /i, ..., /,,I such that />0 and
g
O +l|<—————=
|] J + | 2(N — i
Hence if we put m =i+ [(N — ni), m; = nii; + (N — 1i1), we obtain the inequalities
m> N and

Im®; — @; + m;| <e.

This means that there exists a sequence A, of increasing numbers k1, k», ... such that

kO =1

lim ( eZm’k@v)
k— o0

The theorem is proved. [

Thus we obtain the description of the parameter group F and now we can study
the asymptotic of the minimal solutions V(z).

6. Asymptotic behavior of denominators of Padé approximants for rational functions

In this section we prove the main Theorem 2.2 while for rational functions only.
We will obtain all limit points of the suitable normalized sequence {Q,(z)}, where
0,(z) is the denominators of the Padé approximant of type (1,1 — 1) for the rational

function r(z) = ]1\)78 As we have seen in Section 4, this problem is reduced to the

study of the asymptotic of the minimal solutions Vj(z) of the Bezout equation
because Q,(z) = V,4,(z). By Theorem 4.2, the polynomials V(z) are expressed via
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their leading coefficients v;. For vy we have the formula

Uk :pl(k)zllC 4 e +p/(k)zl;.

First we obtain the asymptotic for v. Fix any point t = (19, ..., 1,) belonging to
the group [F. Let A; be any sequence of numbers ki, k», ..., k;j<kj11 such that
klim (2701 KO — 1 keA,cN.
— o0

Then it is evident that for k— oo, keA,, the sequence v, has the following
asymptotic:

Vg = pkk‘yil[crfl + -+ Cyty + 0(1)}. (61)
Recall that p = |z1| = --- = |z,/, s is the multiplicity zi, ..., z,, and C; is the leading

coefficient of the polynomial p;(z) (see formula (4.14)). Moreover, for all fixed j= -
k we have

Vksj = pkks_l[Clzljrl + o+ Czlty +o(l)], k- oo, keA.. (6.2)
Denote
Si(z) = Ciz{ty + - + Czl1,, teF. (6.3)
If So(t)#0, then there exists
Yktj _ Si(0) keA..

k—oo U _S()(‘L')7

We note that if the roots of D(z) have distinct moduli, then we can take A, = N and
the above equality is the elementary case of the Pouncaré theorem (see [16, Chapter
V, Section 5.1]).

If So(7) #0, then the point © = (74, ..., 7,) €F is called regular with respect to the
system of the poles zy, ..., z,.

We study singular points. Since the Vandermonde matrix is invertible, from
formula (6.3) and the inequalities C;#0 we immediately obtain

Proposition 6.1. For any k in the sequence Sy(1), Si+1(7), ..., Skrv—1(1) there exists at
least one nonzero number.

Definition 6.1. The nonnegative integer 6 (t) (6_(t)) will be called the plus-defect
(minus-defect) of the point teF if 5, (t) (J_ (1)) is the least nonnegative integer such
that S(;+(f)(f) #0 (S_(ji(f)_] (’E) # O)

Thus if 0.(t) =0 (6_(r) =0), then Sp#0 (S_;#0). In the case
04+(1)>0 (6-(r)>0) we have
So="+=85(9-1=0, S5 (:)#0
(S71 — eee — S*éfﬁ) = 07 S*é,(‘[)*l#o)'

It follows from Proposition 6.1 that 0<d (1) <v — 1, 1 <d_(7) <v. If 7 is fixed, then
for brevity we will write 6., d_ instead of d, (1), 0_(1).
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Let . be the plus-defect of the point 7€ F. Then from asymptotic (6.2) we obtain
e -5 pen.. (6.4)

)
k= Vs, Ss,

We are now ready to study the asymptotic of the minimal solutions.

Theorem 6.1. Let © be an arbitrary point of the group F and let A, be a sequence of
indices corresponding to T.
Then, for all ke A, sufficiently large the polynomial Vi(z) can be (A — 64 — 1)-

normalized and there exists

lim VY () = W(z,1), keA.

k— oo
Here Vk) 0+ 1)(z) is the (A — 04 — l)-normalized polynomial Vi(z), W(z,1) is a
polynomial of degree A — 6, — 1 which has z =0 as a root of multiplicity o_. This
polynomial is computed by the formula:

W(z,t) = ng Do(z,1)(z—20)" "z —2)" (2 = 20)™ (2 — 20),

ZCA )1, A,:A(Z), Aiz)=(z—21)..(z = 2). (6.5)

Z—Zj

Proof. By formula (4.7), the coefficient of z*~%+~! in the polynomial V}(z) is found
as follows:
i1
Ol e, —1 = Z Ay if 1 V5, —it1-
=1
From asymptotic (6.2) it follows that for all ke A, sufficiently large the coefficient
Uk+s, 1s nonzero. Therefore,

L, )=5,—1 = Uk+(5+ﬁk,i—5+—lv
where
Uk+5:1 Uk
Brj—s,—1 =1+di ctdis, .
Uk, Uk+5.,.

From the definition of the defect 6, and formula (6.4) we have

. Ukto, -1 : Uk
lim —%= — ... = lim =0, keA,.

k— o0 Vk+o, k— o0 Vketo,

Hence limy_, o, ﬁk,iférl =1, keA;, and o ;-s5,—1 is nonzero for all keA;
sufficiently large. Thus the polynomial V(z) can be really (1 — d, — 1)-normalized.
In order to obtain the normalized polynomial V,EA_&*_U(Z) we use formula (4.8):

)()—l UVk+i—j—1 _j
() ﬁkm_IZZd 7.

Vk+s,
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Consequently there exists
) A il .

lim V,Eké*fl)(z) = ng Z Z diSi_j1z7, keA..
=1 j=0

k— o0 F

This limit we will denote by W (z, 7). It is easily seen that the coefficient W;_; of z*~/
in the polynomial W(z,7)(z) is

J
Wi =S;! Z dyiv1Sj-i-
=1

1
By the definition of the defect J,, we have
So=--=85,1=0, S5 #0.

Hence W, ;=0 for j=1,...,64 and W,_s5._; = 1. Thus the degree of W(z,1)
coincides with A — 6. — 1 and the leading coefficient equals 1.

Let us obtain formula (6.5) for W (z,t). First we find Zj’;(l) Si_j-1z/. Taking into
account definition (6.3) for S;_;_;, we get

i

i—1 i—1 v v i—1 v 7 Zi
. i—im1 e —

E Sij1z) = g E Crrzy 7'z = E C; E 777z = E Cry o Zl.

=0 =0 =1 =1 =0 =1 !

Therefore,
1 & - Zi —1 - CIT] ’ i i
W(z,7) =S Z Z diCrty =S;, Z Z di(z' — z})
=1 =1 - - F T4 0
v
—1 (2)
=5;! > Cr
= zZ— 2z
Since

D) =AG)(z—2)"" 2= 2)" =z (2 — 20)Y,

we arrive at formula (6.5).
It remains to prove that _ is the multiplicity of z = 0 as a root of the polynomial
W (z,7). Obviously, the polynomials W (z,1), w(z,7) and the analytic function

Z;Zl fj—z have z =0 as a root of the same multiplicity. Expanding the function

>i-1 722 into a series in power of z, we obtain
“j

Vo Cits
Z % =S +S,z+ 5'7322 4+ ...
= Z—Zj

By the definition of §_, we have

v
G

Z—Z/‘

= S_(sf_lz()’ + S_,37_225’+1 + -
Jj=1
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This means that J_ is the multiplicity of z = 0 as a root of W (z,7). The theorem is
proved. O

Thus the asymptotic of the minimal solutions V(z) is obtained.

7. Preparation Theorem

In this section we prove the preparation theorem that allows to reduce the study of
the asymptotic behavior of the denominators Q,(z) of the Padé approximants for a
meromorphic function «(z) to the same problem for the rational part r(z) of a(z).

Let a(z) be a function which is meromorphic in the disk |z| < R and analytic at the
origin. Without loss of generality we may suppose that R> 1. Let r(z) be the sum of
the principal parts of the Laurent series of a(z) in neighborhoods of the poles of a(z)
(the rational part of a(z)). Obviously, r(z) is a strictly proper rational function that is
analytic at z = 0. Let us represent a(z) as follows:

a(z) = b(z) +r(2),

where the function b(z) is analytic in |z| < R. Expand these functions into the Taylor
series in power of z:

Jy o o
E ajz/ = E riz/ 4 E biz’.
j=0 j=0 j=0

In order to construct denominator of the Padé approximant of type (n, m) we need

the sequence a/} " 1 = Gn-mi1,@n-m2s -+, Anym - We Will consider this sequence as
a perturbation of the sequence r/*" 41 by the sequence b +1- Since the last sequence

is infinitesimal as n— oo, it can be really regarded as a small perturbation. We
consider the smallness with respect to the following norms.
For matrices in C ¥ we will use the norm

k
4]l = max > |41,
i=1

1</<!

and for a sequence ¢}, = {cu, cpr+1, ..., cn} we introduce

N
lledell = leil:
i=M

We will use the same norm for the generating polynomial c¢}(z) = cpz™ +
ey zMt 4 oo 4 ez of this sequence. It is easily seen that for the Toeplitz
matrix Ti(cy;) (M <k<N) holds

I Tl < HTar (eI = lenll-
By results of Section 3, to study of the asymptotic behavior of the denominators

0,(z) of the Padé approximants of type (n,4 — 1), we must investigate the behavior

of the indices and essential polynomials for the sequence aﬁfj;; The indices and
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n+i—1
n—i+2

(see Section 4). Now we prove that the indices of aij::;; are equal to the indices of

ij:;;, and the essential polynomials of these sequences are infinitesimally close.
To prove this, we need the lemma on the continuity of projectors on the kernels of

Fredholm operators. We reformulate this well-known result (see, e.g., [17, Theorem

11.3]) in the form that is suitable for us.

essential polynomials of the nonperturbed sequence » we have already found

7

Lemma 7.1. Let A be a right invertible operator from a Banach space E\ into a Banach
space E> such that ker A is finite-dimensional. Let AT be any right inverse of A and
Py =1— A"A is the projector on ker A. Then for any operator B such that ||A —

B\|<m it is fulfilled:

1. B is right invertible and B' = C~'A" is the right inverse of B. Here C =

I—A"(4-B), C' =37 (A7(4 - B)).
2. For the projector Pg =1 — B'B = C~'P,C on ker B the following inequality holds

1P4 — Pyl| <4||Pall || 47| ||4 - B]|.

To apply this lemma we will need an estimate of the norm [|P4|| for 4 =

T,1(r%73). Unfortunately, in our case the trivial estimate ||P4||<1+ [|AT||[|A]| is
useless. Therefore we will choose the projector P, (i.e. a right inverse of 4) by a
special way.

In view of further applications to the other intermediate rows, in the following
auxiliary propositions and in Preparation Theorem we will consider arbitrary
sequences ¢, | with the stable indices, where m cannot be equal to 4 — 1.
Proposition 7.1. Let ¢,* | be any sequence with the stable indices n, n+ 1. The first
essential polynomial Ry(z) = ag 4+ o1z + -+ + 0,,2" of this sequence has the nonzero
coefficient aq if and only if the matrix Ty q41(c) . ) obtained from the m x (m + 1)
matrix Toy1(c)n. ) by deleting of the (d + 1)th column is invertible.

Suppose that this condition is fulfilled. Let Ry(z) = og + o1z + -+ + 0,,2™ be the first

essential d-normalized polynomial. Then the matrix

0 .. oo ... 0
0o ... o ... 0

Zua(eim) = | : ; (7.1)
0 ... on ... 0

is the matrix of a projector on ker T, (c*

M +1)' Here the nonzero column has the
number d + 1. Moreover,

<@n+1(cgt’;ﬁ+l) = dm+1 — T,Ll(Cﬁfiﬂﬂ)Tm(Cﬁf%l),
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where T,lH( aitm ) is the right inverse of T,ii(c) . ) obtained from the matrix
T, ani (&) by adding the zero row in the position with the number d + 1.

Proof. Suppose the matrix T 414+1(c"" S +1) is invertible but the coefficient oy of the
polynomial R;(z) is zero. Since the vector R; consisting of the coefficients of the
polynomial R;(z) belongs to ker T, i(cj™n, ), we have Rj(z) =0, which is
impossible. Hence o, #0.

Conversely, if og#0 and the matrix Ty 441(ch" n; +1) is singular, then the space
ker 7,41 ()™ ) contains at least two linearly independent vectors, which is also
impossible because this space is one-dimensional in virtue of the stability of the
indices.

Let Tyy1441(c). ) be an invertible matrix and oy = 1. The direct calculations

show that 2,,1(c)*" ) is a projector. It is also obvious that

Im ynﬂ( Z+:Z+1) span{R } = ker Tn+1( Ch— m+l)

n+m n+m
cpm.1). Since the indices of ¢, |

) is right invertible. Suppose the

(€ men)s e

7/ n-+m : :
Hence #,,1(¢,".1) is a projector on ker T,,+1(

are n, n+ 1, the m x (m+ 1) matrix T,y ()™,

projector 2, (" 1) is generated by some right inverse T, ;f 41

Q'1+1(Cn+m+l) = dm+1 — T;:l-Jrl(CZir;jHrl)TnJrl( Z+Z;+l)'

Then from the equality

g)n‘H( Cn— m+1)TzI+l< n+$+l) =0

( n-+m

it follows that [T Culmi

n+1
n+m
Denote by n+]d+1( )

this zero row. Then from the equation

)44y is the zero row.
('t ) by deleting of

the matrix obtained from 7, (<" 41

n+1

n+m ] n—+m .
TH-H (Cnferl )Tn-H ( n— m+1) =1y
we get
n+m T n-+m _
Tn+1,d+1 (cn7m+l)Tn+17d+l (Cnferl) = I,
1 i n+m — n+m :
e Ty ga(entm ) =Tl goi (i), This completes the proof. [

Corollary 7.1.
121 (D)l = IR (2], (7.2)

n-+m

where Ry (z) is the d-normalized first essential polynomial of the sequence c,"}" .

To apply Lemma 7.1, we must also obtain an estimate for the norm of the
constructed matrix 7, (¢’ ). First we find an explicit formula for 7], (2™ )
in terms of the essential polynomials. Exactly here in our approach the second

essential polynomial is appeared.
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Proposition 7.2. Let ¢ be any sequence with the stable indices n,n + 1, R(z) =
Y n—m+1 v q

ag + oz + o+ 02", Ro(2) = Bo+ Brz+ -+ + B2 its essential polynomials,
and oy = 1.
+

The right inverse T; (et ) from Proposition 7.1 has the following form

TJH(CZfZH) =G - K,
where
ﬁm Bl
oo 0
T | R
00 : .. :
o o
" ’ 0 ﬁm+l
O o
Bo ... O
- ; (7.3)
8 5 0 ...
G 0 ... 0
K= (gar11R1 gar12R1 ... GarimRi),
%o
o
(Glysr = (gas11 Gar12 - Garim), Ri=
Um

and oo = a{z "B, 1 Ri(z) — 27" 1o, Ra(2)} is the test number for Ry(z), Ra(z).

n+m

Proof. Since the indices ¢ , are stable, the matrix 7,41 (2" ) is right invertible.

n—m+ n—m+1
First we construct the right inverse G of T}, (chjZ +1) by the formula from the work
[3] (see also [7, Corollary 7.3]). Define the generating polynomial for G = \|g,'j||,»:od.lu_mf
o
as follows:
m—1 m o
G(t,s) = Z Z git's™.
i—0 =0

Then G(t,s) is found by the formula
G(Z,S) = yr(()?m - l),@‘v(—m,O)s%(l‘, S)a

where

B(1,5) = ULOSW Ri(1)R (13)_ —lsz_z; (5)Ra (1)
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is the generating function for the matrix

e 0N [Buit - B
B _ . . . . . .
g0
Olm oo %o 0 e ﬁm+1
bo ... O Umtl - o
ﬁm ﬁo 0 Om+1

Here, for convenience, we put o,,+; = 0, and 2(a, ) is the projector acting by the
formula

The index ¢ means that the operator acts on the variable .

It is easily seen that the matrix G is obtained from B by deleting the first column.
Hence for G we get formula (7.3).
The matrix T, (" )=G—K is also a right inverse of the matrix

n-+m n-+m n-+m —
Ty (cptm, ) because Ryeker T,p1(c,' . ) and hence T, i(c," . )K =0. More-

over, since oy = 1, we have [G],;,, = [K],, ;. This means that the (d + 1)th row of

f om T orm o :
Tn+l( n— m+1) is zero, Le. Tn+l( n— m+l) is obtained from Tn+l d+1( n— m+l) by addlng

the zero row in the (d + 1)th position. [
Corollary 7.2.
n m 2
17,54 ( n+m+l)H<m||Rl(Z)|| IR (2)]I(T + [[Ri(2)]])-

The proof follows immediately from the estimates

2R IR

1G]l <
)

|IK[| = max [ga1i| [[Ri(2)]|<

I<i<m |

2
|||R1( 2[R (2)]]-
Now we can prove the basic result of the section.

Theorem 7.1 (Preparation Theorem). Let a(z) be a meromorphic function and r(z) its
rational part. Suppose for some fixed m there exists a sequence A of numbers
N, ey Ry ooy Mg <Hgy1, Such that the following conditions are fulfilled.

n-+m .
oyl are stable, i.e. are equal to n,n + 1.

2. For all ne A there is an inleger d, 0<d<m, such that there exist the d-normalized

1. For all ne A the indices of the sequences r

n ITI

first essential polynomials Ry (z) of these sequences.
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3. ||R§'?r’m) (2)|| are uniformly bounded by ne A.
4. For all ne A there exist the second essential polynomials Rgf;w (z) of the sequences
such that || Ry "m)( )H/|a(()"’m)\ are uniformly bounded by ne A.

Then for all ne A sufficiently large we have

n+m

el are stable.

1. The indices of the sequences a
2. There exist the d-normalized first essential polynomials R(I’Zm) (z) of these sequences.

3. IRV (2) = R (2)]| =0 for n— o0, neA.

1,r

Proof. For the sequence " , all conditions of Proposition 7.1 are fulfilled.

Therefore for all ne A the matrix Tyy1 441 (730, )
of Corollary 7.2 and Condition 3-4, we have

IT, n+l d+1( Z+ZZ+1)||<61,

is invertible. Moreover, by virtue

where the constant ¢; does not depend on neA. Let us now consider the matrix
Ti14+1(ay . ). The following estimate

1 Tcrar (@ 00) = Taerann (50|
n+m
= N Twrran G IS T G DI IB = > 1]
Jj=n—m+1

holds. Since the series Zjio bjz/ is absolutely convergent on |z| = 1 (recall that we
assume R>1), for any & there exists a number 7 such that

n+m )

||Tn+17d+l (an7n7+l - TVH-] d‘H( Ty m+l)H<8

for n>ngy, neA. If e<1/cy, then for all ne A sufficiently large we obtain
1

||T”+1d+1( n+m+l) Tn+1d+1( T m+l)H\|| ( n+m )H’
n+1d+1 Ty m+1

i.e. the matrix Ty g1 (a™" 1) is also invertible. Hence for all ne A sufficiently large

rank T, ("t ) = m and the kernel of this matrix is one-dimensional. Thus the

n—m+1
index p; of the sequence o' 41 €quals n for all ne A sufficiently large. Then pu, =

n+ 1. Moreover, by Proposition 7.1, the first essential polynomials RE'Z”) (z) of the

sequences aZf,’Z 41 can be d-normalized.

It remains to prove Statement 3. Using the d-normalized first essential

(n, m)( )) R(n,m)

l,a 1.r (Z) of the sequences an+m n+m

n—m+1> rnferl’

form according to Proposition 7.1 the projectors 2,1 (a)*". ), Ppp1 (7. ,) on the

polynomials R respectively, we
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kernels of the matrices T,,11 (a7 ), Ty (1, ,). Obviously,
IR (@) = R @l = 1201 @0 1) = Zan (7001
Now we apply Lemma 7.1. Put 4 = T, ("4, ,), B= T,y ()™, ) and A" =
T/ (" ). Then P4 =2, (""", ) and for all neA sufficiently large the
condition |4 — B|| = [|Tu1 ()5I| <z is fulfilled. Let us prove that the
projector Pg constructed in Lemma 7.1 coincides with 2, (aZf’,ZH). To do this, we

must define more exactly the structure of the matrices C and C~' from this lemma.
Since

C=1ln1— Tnl+1< n— m+1)Tn+1(bﬁt;Z+1)7

and [T}, ("™ )], is the zero row (see Proposition 7.1), we obtain that the

(d + 1)th row of C has the form
d+1
[Cly1 =(0...0 1 0...0).

It is clear that the same form has the (d + 1)th row of the matrix

= "7+1+Z n+1 n m+l) l1+1(bz+$+l))]'

Then
0 * 0
Pg=C" J7’n+1(n+m+1)C— o ... 1 ... 0
0 ... = ... 0

Here only the (d + 1)th column is nonzero and the element 1 is situated in the

position (d + 1,d 4+ 1). Since Pp is the projector on ker T, (a zf:'n’ﬂ), this column

belongs to ker 7,11 (a)"" ). Hence it coincides with the d-normalized essential
polynomial R\""(z). This means that Pp = 2,,,, (""" )
Apply Lemma 7.1. Taking into account Corollaries 7.1 and 7.2, we get

n+m

< Y. b,

Jj=n—m+1

||‘7n+1( a,_ m+l) Q’PFI (thZJfl)' | <62HTH+1 (bz+%+l)

where ¢, is a constant independent of ne A. Since the series Zjio |b;j| is convergent,
we finally obtain

IRV (2) = R (2)]| -0

as n— oo, neA. The Preparation Theorem is proved. [
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8. Asymptotic behavior of denominators of Padé approximants for meromorphic
functions

Now we are ready to prove the main result of the work (Theorem 2.2). We will see
that the asymptotic behavior of the denominators of the Padé approximants of type
(n, 2 — 1) for a meromorphic function a(z) and for its rational part r(z) is identical.
To obtain this result, we have to verify all conditions of Preparation Theorem 7.1. In
addition to the hypothesis R> 1, without loss of generality we suppose that all poles
of a(z) lie inside the unit circle.

Proof of Theorem 2.2. Let us verify Conditions 1-4 of Preparation Theorem 7.1. We
take the sequence A, shifted by A (because the denominator Q,(z) for the rational
fraction r(z) is V,1,(z)) as A.

1. If m=/A—1, then, by Theorem 4.1, the sequence r,  for the rational
function r(z) has the stable indices n, n+ 1 and the essential polynomials

RU(2) = Via(z), RS (2) = D(z)

1,r

for which &é”’m) =1

2. By Theorem 6.1, for all sufficiently large n such that ne A, — A the first essential
polynomial Iégf’;"’) (z) = Vyis(z) admits the (4 — &, — 1)-normalization. Let R(l'zim (z)
be the (4 — 5y — 1)-normalized polynomial:

(n,m) (A=d4—1) 1
R (=) =V, (2) =
b H Untito, B jms, -1

I/n—O—l (Z) .

Here f,,),-5, 1~ 1 as n— o0, ne A; — 4 (see Theorem 6.1).
Moreover, by this theorem, there exists

lim R""(z) = W(z,7), neA,— i

n,m)
e

3. Hence the norms ||R(1 (z)|| are uniformly bounded by n for ne A; — L.

4. The test number af)"’m) for the essential polynomials

1
R (z) =

Un+i+6. Bn-«—/l,i—(h—l

Vara(z), RE™(z) = D(z)

is found by the formula

(nm) !
O'O = .
Unt+i+4, ﬁn+a,z—5+—1
Hence,
m)—1 ;
|cr(()" )| ||R(2'?,,m> N = onss46, Bussi—s. 1l [ID2)]].

In virtue of asymptotic (6.2), we have
Unsiro, = p" T (n+ 2S5, + o(1)].
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Then v,1 445, >0 asn— 0, neA; — 4, because p = |z1|<1. Since ,,,,5,-1(2) 1,
the norms |a{"™|"||RY"™ ()|| are uniformly bounded by n, neA, — A. Thus all
conditions of the Preparation Theorem are fulfilled.

Hence, by this theorem, the following statements hold:
1. The indices of the sequence " | for the meromorphic function a(z) for all
sufficiently large n, ne A; — 4 are stable, i.e. are equal to n, n+ 1. This means that
ker Ty (a)t 1) 1s one-dimensional. Therefore, the denominator Q,(z) of the Padé

approximant of type (n, 1 — 1) for a(z) is unique up to multiplication by a constant

and Q,(z) is the first essential polynomial Rg'i’lm) (z) of i .

(2), i.e. the denominators Q,(z), admit the (41 — d, — 1)-

(n,m)
l,a

2. The polynomials R
normalization.

Let Q,(z) be such a normalized polynomial. Then we have
3 |IR™(2) = R™™(2)]| >0, n—> o0, neA, — i

l,a
Taking into account Theorem 6.1, we finally obtain

lim Q,(z) = lim V%7V (z) = W(z1), neA. i
n— oo n— oo

It remains only to prove that the family W(z, 1), te[F, exhausts all limit points of
the suitable normalized subsequences of {y,0,(z)}, where y, is a normalizing factor.
We except the trivial cases when the limit of a subsequence of {y,0,(z)} equals zero
or infinity. Then we can assume that a subsequence of {Q,(z)} is normalized in such
a way that the coefficient of z¢ in y,0,(z) equals 1 for some d, 0<d <m, i.e. 7,0,(2)
is d-normalized.

Thus suppose there exists a sequence A of numbers such that for all sufficiently
large n, ne A — 2, the denominators Q,(z) can be d-normalized and there exists

lim QY (z) = Wx(z), neA— i

(It is clear that the inequality d <deg W (z) must be fulfilled.)
Let us consider the sequence (e>™"®1 ... ¢*™"®) for ne A. Since these points lie on
the compact set T" there is a subsequence Ag < A such that there exists

lim (62711')191, ) eZninO‘.) =1, HEAO

n— oo

ey

for some teT". From the definition of F it follows that teF and hence Ay = A,.
Then, by the proved part of the theorem, we have
lim Q,(z) = W(z,t), neA.— A
n— oo
i (2)

Hence there exists 4 = lim,_, o, 7, = lim, -, QQT7 nelA; — A

Thus Wa(z) = AW (z,t). This completes the proof. [

Thus the asymptotic of the denominators Q,(z) is completely studied.

Proposition 2.1 follows at once from continuity of roots of polynomials. Here
we assume that Q,(z) has the root z= oo of corresponding multiplicity if
deg O,(z) <A — 1.
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Proof of Theorem 2.3 is similar to the proof of the final part of de Montessus’s
theorem (see [12, Section 6.2]).

Consider some applications of Theorem 2.2. The following question is related to
the class of problems known as inverse problems: can certain of the poles of m, ,(z)
converge to some point which is not a singular point of a(z)? We answer the question
for the case m = 4 — 1.

Proposition 8.1. If lim,_, ., a, = a, where a, is a pole of m,;,_1(z), then a is a pole of

a(z).

Proof. Suppose that « is different from the poles zy, ..., z, of the function a(z). By
Theorem 2.2, since « is a limit point of the set of poles for an arbitrary subsequence
of m, ;-1(z), a is a zero of w(z,t) for all teF.

Fix © = (11, ...,7,)€F and consider the sequence t/ = p~/(t,z{, ..., 1,2/) €F, j =
0,1, ... . Denote w;(z) = w(z,t/). Then it is easily seen that

P/‘ijﬂ(z) = pjzwj(z) = S;(1)A(z), j=0.

Hence S;(t)A(a) = 0. But zeros of w(z,) are different from zeros z, ..., z, of A(z).
Consequently A(a)#0 and S;(7) = 0 for j>0. However, these equalities contradict
Proposition 6.1. Hence a coincides with one of the points zj, ...,z,. O

The proposition is a special case of Suetin’s theorem [30]. Some important works
in this direction are [31,32].
For another applications of Theorem 2.2 we refer to [10].

9. The geometry of the set of additional limit points

Thus the set of the limit points of poles of the sequence {m,(z)} as n— oo consists
of the poles of a(z) (the multiplicity of the poles zi, ..., z, is less by 1), possibly the
points z = 0 and oo, and the set ./ of the zeros of polynomials from the family

v
o(z,7) = Z CiAi(z)t;, t©=(t1,...,7y)€F
=

(see Proposition 2.1).

The last set A is called the set of additional limit points.

In the section we will study the geometry of this set. First we consider the case
when A7F = 0, i.e. when there exists lim,_, o, Qn(z).

Proof of Theorem 2.4. Let v =1, ie. |z1| = -+ = |z,|>|zu41]|= -~ =|z/| and 51> ;.
Then w(z,t) = const. Hence A'F = 0 and the sequence of the (4 — 1)-normalized
denominators Qy(z) has the limit:

Jim 0n(2) = (z = 20)" 7 (7 = 22) " (2 = 2",
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Conversely, suppose that Q,(z) is normalized somehow and there exists
lim,, » On(z). This hypothesis means that all polynomials from the family w(z, 1)
have the same set of zeros for all telF. But as we see in Proposition 8.1 the
polynomials w(z, 1) have no common zeros. Hence w(z,t) = const for all teF. Let
v>1. Consider the sequence ;(z) as in Proposition 8.1. By Proposition 6.1, since the
leading coefficient of w;(z) is p/S;(t), there exists j such that deg w;(z) = v — 1. This
contradiction concludes the proof. [

Let us consider the next case v = 2.

Proof of Theorem 2.5. Let v=2. If ze A, i.e.
ClAl(Z)‘E] + CzAz(Z)TQ =0,
then z lies on the Apollonius circle
Q
G
Now we determine when the converse inclusion is valid. We must consider the
three cases. If » =2, i.e. F = T2, then it is obvious that any point of circle (9.1)

belongs to Af.
Let now r = 1. Suppose that @, ©; are linearly independent over Q@ and ®; =

zZ— 1

. (9.1)

zZ— 1

200+ 01, pj,q7eZ. Let us explicitly calculate the group [. The matrix 4 has now
the form

0
. q0 Do .
0 g1 pi

Since py, g1 are coprime, there exist integers u;, v; such that ¢;u; + pjv; = 1. Let d be
the least common multiple of the denominators ¢, q;. Then the direct calculation
shows that

_qoP1 _qoP1 9
d —Ur U d -
S = and =| d
qoq1 ( g1 P ) qoq1 0
d d

This means that ¢ = % and

—0v u
Ty = b
q1  Di
Thus,
2nijuy 27

F={(e e )| teT, j=0,1,....0 — 1}.

First let g; #p;. For definiteness we assume that n = p; — ¢; >0. If zq lies on circle
(9.1), then

C]AI(Z()) + CzAz(Zo)l() =0
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for some 7)€ T. We take any value of the root /7y as 7;. Multiplying the above
equation by ¢{', we obtain

o(zo,70) =0

for 79 = (t‘l“,t’f‘)e[F. Hence zge A'y. Thus in this case A F coincides with the
Apollonius circle.

Let now ¢ = p;. From the form of the unimodular matrix 75! it follows that
¢q1 = p1 = 1. Hence o = gy and we can choose v; =0, u; = 1. In this case

F={«l, e7)|teT, j=0,1,....,0 — 1}.

Since F cannot coincide with the diagonal of the torus T2, necessarily we have
6 =¢qo#1. Hence ©®, = Z—g + @y, i.e. the points zy, z; are vertices of a regular o-gon.

Thus,
o(z,7) = ({[CIA(2) + Cre v As(2)], teT, j=0,1,....,0 1,

and A coincides with the set of zeros of the polynomials

wj(z) = Ci(z — 22) + Cze¥(z—zl), j=0,1,....,0 — 1,

i.e. A consists of a finite number of points lying on curve (9.1). If all telF are
regular, then the number of these points equals ¢. The singular point 7 exists iff

C) + Cze? =0 for some (unique) value of j, j=0,1,...,6 — 1. In this case the
number of points in A equals ¢ — 1.

It remains to consider the case r = 0. Then ®; = Z—:, 0, = ’q’—i, Pj,q;€Z, and zi, z;
are also vertices of a regular o-gon, where ¢ is the least common multiple of the
denominators ¢ and ¢». Let ®; =7, ®, = "2. Then

2ninyj 2minyj

F={(e7 ,e= )|j=0,1,....0 — 1}.

Therefore A"F consists of ¢ or ¢ — 1 (in the singular case) points. The theorem is
proved. [

Let now v>2. First we describe general properties of /¢ that hold for any group
F. Denote by A7 (1<j<v) the set of complex points z satisfying the inequalities

1CGAD< D [CAz)], j=1, ...,
ey

Put A = ﬂ]‘.'zl ;. We note that the poles zj, ...,z, do not belong to ./ because
ijAj(Zj)Tj#(), Ak(Zj) = 07 k?é],],k = 1, e, Ve

Proposition 9.1. For v>2 the set N is a nonempty closed subset of N".

The proof is straightforward.
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In particular, for v =2 the set ./ is the Apollonius circle. For v>2 the set A"
already does not degenerate into a curve. The boundary of A" is the curve L =
Uj=1 Lj, where L; is defined by the equation

Y

1GAG) =D [GA)], J=1,...v.
ey

It is not difficult to verify the following properties of L;:

() LinL; =0, i#j;
(2) L; is symmetric with respect to the circle |z| = p;
(3) L; is unbounded iff

v

Gl=>" G,

k=1
k#j
In order to prove Theorem 2.6, we need a criterion for the existence of a root of a
polynomial a(t) = ag 4+ o171 + -+ + o7, belonging to the torus T". We will use the
following simple homotopic considerations.

Let o(zy, ...,7,) be continuous and nonvanishing on the torus T” function. Fix
values of Ty, ..., Ty—1: T| = 1}, ..., Ty—1 = 10_,. Define the partial Cauchy index with
respect to the variable t,:

1 .
0 0 012
Ky = %[arg a(ty, ooy Ty 1€ )] oo-

Here [arg]é”zo is the increment of arg when ©® changes from ® = 0 to 2x. Since the
torus T"! is a compact connected set, the index «, does not depend on a way of

fixing of 1y,...,7,—1. In particular, if o(t),...,7,) is a polynomial, then
(19, ...,7° |, 7,) has the same numbers of zeros into the unit disk |t|<1 for any
way of fixing of 71, ..., 7,_1.

Lemma 9.1. A4 polynomial o(t) = oo + o171 + -+ + ayTp, ;70 for j=1,....n, has a
root belonging to the torus T" if and only if the inequalities

n
oy <> foul, j=0,....n 9.2)
k=0
k%]
are valid.

Proof. The proof of necessity is trivial. Let us prove sufficiency.
Obviously, for n = 1 inequalities (9.2) provide the existence of a root of a(7) in T".
Let n>1 and o; = \ocj|ei“’/,j =0, 1, ...,n. First we suppose that for the coefficients of
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the polynomial o(7) the equality

n

oyl = Jeud

k=0
k#j
holds for some j, 0<j<n. Put

0 __ —i(p;—, 0 _ —i(pj—o¢ .
Tj__e (; o)’ T, =e (/ 0)’ k7é]

Then o(<Y, ...,7%) = 0. Hence in this case there exists a root t° = (19, ...,7%) in T".
Suppose now that the strict inequalities

n

oyl < > lowl, j=0,1,...,m (9.3)
=0
k#j
are valid.

The existence of a root we prove by induction on n>=2. Let n = 2. At first we fix
1) = ¢~ 1=%0), Then a(<{, 72) has a unique root 73 = —e "l and, by inequalities
(9.3), we have |3 > 1. Hence a(z}, 72) has no roots inside the unit circle |z2| = 1. Now
we fix the other value of t} = —e~#?1=®). In this case o(t},7,) has a unique root
o= —e"“’ow, and, in virtue of inequalities (9.3), we obtain |t}|<1. Therefore

a(t},72) has one root inside the circle |to| = 1. If we suppose that a(;, 72) #0 on the
torus T2, then a(ty, ;) has different numbers of roots inside |t2| = 1 for different
ways of fixing of 7. But this is impossible and hence «(z;,7;) has a root belonging to
T2

Suppose our statement holds if the number of variables of a(t) is n — 1. Prove its

validity for polynomials in n variables. At first we fix 7y, ...,7, as follows: 19 =
e~@i=e) 10 = ¢ (¢1790), Then the polynomial
a(t), 0t = (ool + - Joe1])e® + T,

has a unique root

7;2 — ¢l oo 4 -+ + |°‘n—1|7
%,

lying, in virtue of the inequality |a,|<|oo| + --- + |o,—1], outside the disk |7,|<1. If

for the coefficients oy, ..., o,_; the inequalities
n—1
|aj|<z |O(k|7 jZOa"'vn_lv (94)
k=0
k#j
are valid, then, by the induction hypothesis, there is a point (¢}, ...,z} |)eT""! such

that o + ot} + -+ + o,y | = 0. Hence the polynomial

1 1
ATy, eens Ty ysTn) = OuTy
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has the root t} = 0 lying inside |t,| = 1. This is possible only if a(z1, ..., 7,) has a root
in T". Hence if conditions (9.4) are fulfilled, the statement of the lemma is proved.

Suppose now that these conditions are not fulfilled, i.e. there is some j, 0<j<n —
1, such that

n—1
o> > o]
k=0
k#j
Fix now values of 7y, ...,7,-1 as follows: 7} = —e71000) | 7l = emileim00) | | =
I,....,n—1, k#j.
Then the polynomial
n—1
1 1 ;
ATy, eens Ty gy Tn) = €7 E lot| = o] | + otaTa
k=0
k+#j

has a unique root 7! for which, in virtue of our supposition, holds

Taking into account the inequality

n
oyl < o
k=0

k)
from the system of inequalities (9.2), we get |t}|<1. Again this is possible iff
o(ty, ..., T,) has a root in T". The lemma is completely proved. [

Theorem 2.6 is a direct consequence of the lemma.

Proof of Theorem 2.6. It remains to prove only the inclusion A" A . If zge A", i.e.,

1GA )< D |CAk(z0)l, =1, ...,
)
then, by Lemma 9.1, the polynomial w(z,) has a root t° = (<%, ...,<%)eT" =F.
Hence zoe /. O

Lemma 9.1 allows to find A" for one more case.

Theorem 9.1. Suppose ®y = 1,0y, ...,0, (1<r<v) are linearly independent over Q
and Oy (r+ 1<k<v) are rational numbers. Since Oy is defined up to an integer
summand, we can uniquely represent it as follows:

O =" k=rs1,...v
o
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where 0<n, <o — 1. By A" we denote the set of complex points satisfying the
inequalities:
|CiA(z |<Z |CeAk(2)], j=0,1,...,r.
k;éj

Here for uniformity we put

CoAo(z) = [p| ™" Z Chr(2)zf, n=0,1,...,0-1.
k=r+1
Then
o—1
NE = U A
n=0

Proof. The group F in this case can be easily found by definition:

F = {(e2mm®r  e2mmony
={(t1, ...,t, &, 8 [ (1) €T, n=0,1,...,0 — 1},
where &, = ¢+, Since (&, &) =p7 "2, ..., 2)), we have
oz Z CelAi(2)te +p7" Z CrlAi(z)zy,
k=1 k=r+1

(t1, ..., t)eT,n=0,1,...,0 — L.
As above it remains to apply Lemma 9.1. [

We conclude the section with the case of a regular arrangement of the poles
Zly eeeyZy-

Proof of Theorem 2.7. Suppose that A" consists of a finite number of points. Fix
any point (ty, ...,7,)€F and consider the sequence of polynomials w;(z), j=>0, as in
Proposition 8.1. From the recurrence relation p/*'w;.1(z) = p/zw;(z) — S;(t)A(z)
we obtain

P p(2) = pi o Z 1S, (DA(). (9.5)

Since .A/'f is finite, in the sequence {w;(z)}~ =0 there are polynomials that coincides
up to constant factor. Let wj.,(z) = cw;(z). It follows from Eq. (9.5) that

a—1

pl(ep” = 2)y(2) = ) 2718 i()A(2).

i=0
Since w;(z) and A(z) are coprime, A(z) is a divisor of cp” — z°. Hence |c| = 1 and all
roots zj, ..., z, of the polynomial A(z) lie in vertices of a regular o-gon.
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Conversely, suppose the poles zy, ..., z, are vertices of a regular o-gon. Let us take
the pole z; = pe*™®1 as the original vertex. Then the arguments of the vertices are
0,0; +1,...,0; + = and

13
Q=0 +—, 2<k<v<o, I1<m<o-1.
o

As above the group [ can be easily found by the definition. Let [, be the closure of
the cyclic group generated by ¢2™©1 . It is clear that [, is a finite cyclic group if @, is a

2ming

rational number, and F; = T if @, is an irrational one. Since e 7 = i—’;, we have
F={&(z],....z)) | éeFy, j=0,1,....,6 — 1,}

and w(z,7) = &2,/ w;(z), where w;(z) = 3, _, C;(Ak(z)z;f7 j=0,...,0 — 1.Hence A}
is the union of the zeros of the polynomials w;(z), j =0, ...,06 — 1, i.e. a finite set.

The sequence A, now coincides with the sequence A; consisting of the positive
integers n such that n = j (mod ¢). The polynomials w,(z) can be defined for all n>0.
Let o, = Y ;_; Ciz} be the (formal) leading coefficient of the polynomial w,(z).
Then the following recurrence formula of type (4.3):

Wuy1(2) = zoy(2) — 0,A(2), n=0,

is evident. [

It is not difficult to show that if r = 1, then the set A" consists of a finite number
of points (for the case when the connected component of the identity is a diagonal
subgroup of F) or a finite numbers of algebraic curves. However an explicit
description of A for any group F is not yet obtained.
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